Eur. J. Entomol. 117: 93-100, 2020 | DOI: 10.14411/eje.2020.010
Increased duration of extreme thermal events negatively affects cold acclimation ability in a high-latitude, freshwater ectotherm (Ischnura elegans; Odonata: Coenagrionidae)Original article
- Institute of Biological and Environmental Sciences, The University of Aberdeen, Zoology Building Tillydrone Ave, Aberdeen, AB24 2TZ, UK; e-mails: lesley.smith.13@aberdeen.ac.uk, lesleylancaster@abdn.ac.uk
Instances of heat waves and cold snaps are becoming more frequent and of increasing duration worldwide. It is well established that short exposure to high or low-temperatures, such as during extreme weather events, often results in adaptive (acclimation/hardening) or maladaptive plastic changes in tolerance of organisms to subsequent thermal stressors. However, little information is available about how the duration of a prior stressful thermal event mediates future organismal thermal responses. Understanding durational effects of thermal conditioning can help predict ectothermic survival in response to novel extreme weather patterns.
Keywords: Odonata, Coenagrionidae, Ischnura elegans, damselflies, climate change, thermal niche variability, thermal tolerance, acclimation
Received: June 19, 2019; Revised: February 5, 2020; Accepted: February 5, 2020; Published online: February 17, 2020 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abram P.K., Boivin G., Moiroux J. & Brodeur J. 2017: Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. - Biol. Rev. 92: 1859-1876.
Go to original source...
- Alemu T., Alemneh T., Pertoldi C., Ambelu A. & Bahrndorff S. 2017: Costs and benefits of heat and cold hardening in a soil arthropod. - Biol. J. Linn. Soc. 122: 765-773.
Go to original source...
- Baker H.S., Millar R.J., Karoly D.J., Beyerle U., Guillod B.P., Mitchell D., Shiogama H., Sparrow S., Woollings T. & Allen M.R. 2018: Higher CO2 concentrations increase extreme event risk in a 1.5°C world. - Nature Clim. Change 8: 604-608.
Go to original source...
- Bar-Ziv M.A. & Scharf I. 2018: Thermal acclimation is not induced by habitat-of-origin, maintenance temperature, or acute exposure to low or high temperatures in a pit-building wormlion (Vermileo sp.). - J. Therm. Biol. 74: 181-186.
Go to original source...
- Bouton N., Iserbyt A. & Van Gossum H. 2011: Thermal plasticity in life-history traits in the polymorphic blue-tailed damselfly, Ischnura elegans: No differences between female morphs. - J. Insect Sci. 11: 112, 11 pp.
Go to original source...
- Bowler K. & Terblanche J.S. 2008: Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? - Biol. Rev. 83: 339-355.
Go to original source...
- Buckley L.B. & Huey R.B. 2016: Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. - Global Change Biol. 22: 3829-3842.
Go to original source...
- Burnham K.P. & Anderson D.R. 2002: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, 488 pp.
- Burton V., Mitchell H.K., Young P. & Petersen N.S. 1988: Heat shock protection against cold stress of Drosophila melanogaster. - Mol. Cell. Biol. 8: 3550-3552.
Go to original source...
- Bybee S., Córdoba-Aguilar A., Duryea M.C., Futahashi R., Hansson B., Lorenzo-Carballa M.O., Schilder R., Stoks R., Suvorov A., Svensson E.I. et al. 2016: Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. - Front. Zool. 13: 46, 20 pp.
Go to original source...
- Cham S. 2009: Field Guide to the Larvae and Exuviae of British Dragonflies. Vol. 2: Zygoptera. British Dragonfly Society, Peterborough, 152 pp.
- Chanthy P., Martin R.J., Gunning R.V. & Andrew N. 2012: The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). - Front. Physiol. 3: 465, 8 pp.
Go to original source...
- Colinet H. & Hoffmann A.A. 2012: Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. - Funct. Ecol. 26: 84-93.
Go to original source...
- Colinet H., Lee S.F. & Hoffmann A. 2010: Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. - FEBS J. 277: 174-185.
Go to original source...
- Córdoba-Aguilar A. 2008: Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press, Oxford, 304 pp.
Go to original source...
- Czajka M.C. & Lee R.E. 1990: A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. - J. Exp. Biol. 148: 245-254.
Go to original source...
- Deutsch C.A., Tewksbury J.J., Huey R.B., Sheldon K.S., Ghalambor C.K., Haak D.C. & Martin P.R. 2008: Impacts of climate warming on terrestrial ectotherms across latitude. - Proc. Nat. Acad. Sci. 105: 6668-6672.
Go to original source...
- Dudaniec R.Y., Yong C.J., Lancaster L.T., Svensson E.I. & Hansson B. 2018: Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans). - Mol. Ecol 27: 2576-2593.
Go to original source...
- EASAC 2013: Trends in Extreme Weather Events in Europe: Implications for National and European Union Adaptation Strategies. EASAC Policy Report 22. European Academies Science Advisory Council, London, URL: https://easac.eu/fileadmin/PDF_s/reports_statements/Extreme_Weather/EASAC_report_Extreme_Weather_in_Europe_Nov13.pdf
- Enriquez T. & Colinet H. 2019: Cold acclimation triggers major transcriptional changes in Drosophila suzukii. - BMC Genom. 20: 413, 17 pp.
Go to original source...
- Fitt R.N.L. & Lancaster L.T. 2017: Range shifting species reduce phylogenetic diversity in high latitude communities via competition. - J. Anim. Ecol. 86: 543-555.
Go to original source...
- Fitt R.N.L., Palmer S., Hand C., Travis J.M.J. & Lancaster L.T. 2019: Towards an interactive, process-based approach to understanding range shifts: developmental and environmental dependencies matter. - Ecography 42: 201-210.
Go to original source...
- Fox J. 2003: Effect displays in R for generalised linear models. - J. Stat. Softw. 8(15), 27 pp.
Go to original source...
- Fox J. & Weisberg S. 2018: An R Companion to Applied Regression. SAGE, Thousand Oaks, CA, 608 pp.
- Frich P., Alexander L.V., Della-Marta P.M., Gleason B., Haylock M., Tank A.M.G.K. & Peterson T. 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. - Climate Res. 19: 193-212.
Go to original source...
- Gilman S.E., Urban M.C., Tewksbury J., Gilchrist G.W. & Holt R.D. 2010: A framework for community interactions under climate change. - Trends Ecol. Evol. 25: 325-331.
Go to original source...
- Gotcha N., Terblanche J.S. & Nyamukondiwa C. 2018: Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly. - J. Evol. Biol. 31: 98-110.
Go to original source...
- Hemmati C., Moharramipour S. & Talebi A.A. 2014: Effects of cold acclimation, cooling rate and heat stress on cold tolerance of the potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechiidae). - Eur. J. Entomol 111: 487-494.
Go to original source...
- Hering D., Schmidt-Kloiber A., Murphy J., Lücke S., Zamora-Muñoz C., López-Rodríguez J.L., Huber T. & Graf W. 2009: Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. - Aquat. Sci. 71: 3-14.
Go to original source...
- Hickling R., Roy D.B., Hill J.K., Fox R. & Thomas C.D. 2006: The distributions of a wide range of taxonomic groups are expanding polewards. - Global Change Biol. 12: 450-455.
Go to original source...
- IPCC 2001: Third Assessment Report of the Intergovernmental Panel on Climate Change IPCC (WG I & II). Cambridge Univ. Press, Cambridge.
- Jackson F.L., Fryer R.J., Hannah D.M., Millar C.P. & Malcolm I.A. 2018: A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland's Atlantic salmon rivers under climate change. - Science Total Environ. 612: 1543-1558.
Go to original source...
- Kendon M., McCarthy M., Jevrejeva S., Matthews A. & Legg T. 2018: State of the UK climate 2017. - Int. J. Climatol. 38: 1-35.
Go to original source...
- Kennedy Jr W.J. & Gentle J.E. 1980: Statistical Computing. Marcel Dekker, New York, Basel, 591 pp.
- Knapp M., Vernon P. & Renault D. 2018: Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. - J. Therm. Biol. 74: 275-280.
Go to original source...
- Kodra E., Steinhaeuser K. & Ganguly A.R. 2011: Persisting cold extremes under 21st-century warming scenarios. - Geophys. Res. Lett. 38: L08705, 5 pp.
Go to original source...
- Krokowski J.T. 2007: Changes in the trophic state and phytoplankton composition and abundance in Loch Lomond, Scotland, UK. - Oceanol. Hydrobiol. Stud. 36: 17-34.
- Lancaster L.T., Dudaniec R.Y., Hansson B. & Svensson E.I. 2015: Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. - J. Biogeogr. 42: 1953-1963.
Go to original source...
- Lancaster L.T., Dudaniec R.Y., Chauhan P., Wellenreuther M., Svensson E.I. & Hansson B. 2016: Gene expression under thermal stress varies across a geographical range expansion front. - Mol. Ecol. 25: 1141-1156.
Go to original source...
- Lancaster L.T., Dudaniec R.Y., Hansson B. & Svensson E.I. 2017a: Do group dynamics affect colour morph clines during a range shift? - J. Evol. Biol. 30: 728-737.
Go to original source...
- Lancaster L.T., Morrison G. & Fitt R.N. 2017b: Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. - Phil. Trans. R. Soc. (B) 372: 20160046, 10 pp.
Go to original source...
- Lee R.E. Jr., Chen C.P. & Denlinger D.L. 1987: A rapid cold-hardening process in insects. - Science 238: 1415-1417.
Go to original source...
- Leonard A. & Lancaster L.T. in press: Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift. - BMC Evol. Biol. DOI: 10.1186/s12862-020-1589-7.
Go to original source...
- Loeschcke V. & Hoffmann A.A. 2007: Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. - Am. Nat. 169: 175-183.
Go to original source...
- Ma C.-S., Hau B. & Poehling H.-M. 2004: The effect of heat stress on the survival of the rose grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). - Eur. J. Entomol. 101: 327-332.
Go to original source...
- Macdonald S.S., Rako L., Batterham P. & Hoffmann A.A. 2004: Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. - J. Insect Physiol. 50: 695-700.
Go to original source...
- MacMillan H.A., Knee J.M., Dennis A.B., Udaka H., Marshall K.E., Merritt T.J.S. & Sinclair B.J. 2016: Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. - Sci. Rep. 6: 28999, 14 pp.
Go to original source...
- Manenti T., Sørensen J.G. & Loeschcke V. 2017: Environmental heterogeneity does not affect levels of phenotypic plasticity in natural populations of three Drosophila species. - Ecol. Evol. 7: 2716-2724.
Go to original source...
- Marais E., Terblanche J.S. & Chown S.L. 2009: Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). - J. Insect Physiol. 55: 336-343.
Go to original source...
- Mazerolle M.J. 2016: AICcmodavg: Model Selection and Multimodel Inference Based on (Q) AIC (c). R Package Ver. 2.0-3. URL: https://cran. r-project. org/package= AICcmodavg.
- McGrath M. 2018: Weather: UK Experiencing Hotter Days and 'Tropical Nights' - Met Office. BBC News, URL: https://www.bbc.co.uk/news/science-environment-46064266.
- Meehl G.A. & Tebaldi C. 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. - Science 305: 994-997.
Go to original source...
- Met Office N.C.I.C. 2018: State of the UK Climate 2017: Supplementary Report on Climate Extremes. URL: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/state-of-uk-climate/soc_supplement-002.pdf
- Mutamiswa R., Machekano H., Chidawanyika F. & Nyamukondiwa C. 2018: Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). - J. Therm. Biol. 79: 85-94.
Go to original source...
- Nyamukondiwa C. & Terblanche J.S. 2010: Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature. - Physiol. Entomol. 35: 255-264.
Go to original source...
- Nyamukondiwa C., Chidawanyika F., Machekano H., Mutamiswa R., Sands B., Mgidiswa N. & Wall R. 2018: Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. - PLoS ONE 13(6): e0198610, 13 pp.
Go to original source...
- Parmesan C. 2006: Ecological and evolutionary responses to recent climate change. - Annu. Rev. Ecol. Evol. Syst. 37: 637-669.
Go to original source...
- Rajamohan A. & Sinclair B.J. 2009: Hardening trumps acclimation in improving cold tolerance of Drosophila melanogaster larvae. - Physiol. Entomol. 34: 217-223.
Go to original source...
- Rako L. & Hoffmann A.A. 2006: Complexity of the cold acclimation response in Drosophila melanogaster. - J. Insect Physiol. 52: 94-104.
Go to original source...
- Sánchez-Guillén R.A., Córdoba-Aguilar A., Hansson B., Ott J. & Wellenreuther M. 2016: Evolutionary consequences of climate-induced range shifts in insects. - Biol. Rev. 91: 1050-1064.
Go to original source...
- Semsar-Kazerouni M. & Verberk W.C.E.P. 2018: It's about time: Linkages between heat tolerance, thermal acclimation and metabolic rate at different temporal scales in the freshwater amphipod Gammarus fossarum Koch, 1836. - J. Therm. Biol. 75: 31-37.
Go to original source...
- Sgro C.M., Terblanche J.S. & Hoffmann A.A. 2016: What can plasticity contribute to insect responses to climate change? - Annu. Rev. Entomol. 61: 433-451.
Go to original source...
- Sørensen J.G., Kristensen T.N. & Loeschcke V. 2003: The evolutionary and ecological role of heat shock proteins. - Ecol. Lett. 6: 1025-1037.
Go to original source...
- Stoks R. & De Block M. 2011: Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins. - PLoS ONE 6(2): e16935, 6 pp.
Go to original source...
- Stoks R., Swillen I. & De Block M. 2012: Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. - J. Anim. Ecol. 81: 1034-1040.
Go to original source...
- Terblanche J.S., Deere J.A., Clusella-Trullas S., Janion C. & Chown S.L. 2007: Critical thermal limits depend on methodological context. - Proc. R. Soc. Lond. (B) 274: 2935-2943.
Go to original source...
- Waagner D., Holmstrup M., Bayley M. & Sørensen J.G. 2013: Induced cold-tolerance mechanisms depend on duration of acclimation in the chill-sensitive Folsomia candida (Collembola). - J. Exp. Biol. 216: 1991-2000.
Go to original source...
- Wickham H. 2016: ggplot2: Elegant Graphics for Data Analysis. Springer, New York, URL: http://ggplot2.org
Go to original source...
- Wood C., Fitt R.N.L. & Lancaster L.T. 2019: Evolving social dynamics prime thermal tolerance during a poleward range shift. - Biol. J. Linn. Soc. 126: 574-586.
Go to original source...
- Woodward G., Perkins D.M. & Brown L.E. 2010: Climate change and freshwater ecosystems: impacts across multiple levels of organization. - Phil. Trans. R. Soc. (B) 365: 2093-2106.
Go to original source...
- Zuur A.F., Leno E.N. & Elphick C.S. 2010: A protocol for data exploration to avoid common statistical problems. - Meth. Ecol. Evol. 1: 3-14.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.