Increased duration of extreme thermal events negatively affects cold acclimation ability in a high-latitude, freshwater ectotherm (Ischnura elegans; Odonata: Coenagrionidae)

LESLEY A. SMITH and LESLEY T. LANCASTER

Institute of Biological and Environmental Sciences, The University of Aberdeen, Zoology Building Tillydrone Ave, Aberdeen, AB24 2TZ, UK; e-mails: lesley.smith.13@aberdeen.ac.uk, lesleylancaster@abdn.ac.uk

Key words. Odonata, Coenagrionidae, Ischnura elegans, damselflies, climate change, thermal niche variability, thermal tolerance, acclimation

Abstract. Instances of heat waves and cold snaps are becoming more frequent and of increasing duration worldwide. It is well established that short exposure to high or low-temperatures, such as during extreme weather events, often results in adaptive (acclimation/hardening) or maladaptive plastic changes in tolerance of organisms to subsequent thermal stressors. However, little information is available about how the duration of a prior stressful thermal event mediates future organismal thermal responses. Understanding durational effects of thermal conditioning can help predict ectothermic survival in response to novel extreme weather patterns.

We assessed the effect of stressful temperature duration on tolerance to subsequent cold exposure in a widespread freshwater invertebrate species in Britain. Following a week-long acclimation period at 15°C, wild-caught blue-tailed damselfly Ischnura elegans larvae were held at stressful thermal extreme (2°C or 30°C) temperatures for varying durations designed to mimic a range of extreme to plausible durations of heat waves or cold snaps in the wild (30 min, 2 h, or 24 h). After a period of re-equilibration to ambient temperatures (15°C), we then experimentally assessed CTmin, the temperature which renders an individual unresponsive, as an index of cold tolerance.

Prior exposure to 2°C, simulating a cold snap, improved future cold tolerance, but only when individuals experienced very brief prior exposures to these conditions (30 min up to 2 h), and this benefit was lost following 24 h prior exposure. Prior exposure to 30°C, simulating a heat wave, consistently worsened the subsequent cold tolerance of individuals, with the detrimental effect of prior heat exposure increasing linearly as a function of duration.

The research indicates that cold snaps can provide beneficial hardening effects against future cold exposures, but only when these (priming) extreme weather events are of very short duration (here, 30 min or 2 h). Longer durations of exposure to either extreme heat or cold weather events can reduce the ability of individuals to beneficially react to subsequent cold stresses, and may have deleterious effects on future thermal tolerance. The results suggest that increasing durations of extreme temperature events will reduce cold hardening ability of freshwater invertebrates, and that the duration of extreme weather events, or durational changes in freshwater thermal regimes resulting from changes in snowmelt dynamics, is an important parameter to consider when studying organismal responses to climate change.

INTRODUCTION

Duration of extreme weather events

Irregular bouts of temperature fluctuation occur in marine, freshwater and terrestrial biomes alike (Parmesan, 2006). Global terrestrial climatic temperatures are increasing; as are instances of extreme spells of temperature fluctuation known as cold snaps and heat waves (EASAC, 2013). An increasing area of the globe was affected by increases in extreme climactic events starting in the late 20th century (Frich et al., 2002), and these increasing durations of extreme weather events have been linked to increased concentrations of atmospheric CO2 (Baker et al., 2018). Instances of heat waves will likely continue to become more acute, lengthy and increase in frequency (Kendon et al., 2018) due to the projected increase of mean global temperatures (Meehl & Tebaldi, 2004).

In temperate regions that typically experience nocturnal relief from high temperature extremes, heat waves lasting 24 h or more are becoming increasingly more common: In the UK, for instance, there were 2 nights in 2018 which exceeded 20°C over a 24 h period, in comparison to 4 such nights total over the previous 10 years, and only 8 total such nights between 1961–1990 (Met Office, 2018; Kendon et al., 2018; McGrath, 2018). Furthermore, IPCC AR4 climate models suggest that cold snaps will continue to persist despite a warming climate, and in some instances
cold snap conditions will become more severe (Kodra et al., 2011). In Scotland, where this study was conducted, cold spells have consistently increased in duration over the past 60 years, from an average of 2.1–2.2 days per year in 1961–1990 to 3.4–4.6 days per year in 2008–2017 (Kendon et al., 2018).

Changes in snowpack and runoff dynamics under climate change can also lead to changes in the durations of extreme heat and cold environmental temperature exposures to freshwater ecosystems at high latitudes and elevations. Thus, it is now timely to understand how changing durations of climate extremes affect organismal responses, as a high priority for climate change ecologists. To explain how species will persist despite global warming, it is important to understand the responses of wild individuals, populations, and communities to the different aspects of these temperature perturbations (Deutsch et al., 2008; Gilman et al., 2010; Sgro et al., 2016).

To survive under variable thermal conditions typical of most temperate climate regimes, ectotherms often exhibit adaptive plasticity which allows them to anticipate changing thermal conditions within their lifespan (Sgro et al., 2016; Abram et al., 2017; Manenti et al., 2017). There are two distinct mechanisms of adaptive thermal plasticity in response to cold weather events that afford an organism protection in subsequent otherwise lethal conditions. A rapid cold hardening effect (RCH) is a phenomenon whereby increased survival probability at an otherwise lethal cold temperature follows a short period of exposure to extremely low temperatures (Lee et al., 1987; Chanthy et al., 2012; Sgro et al., 2016). In contrast, cold acclimation is a process believed to be distinct from RCH, and instead results from a longer-term prior exposure to moderately stressful environments which improves survival and performance over longer time frames of days or even weeks (Colinet & Hoffmann, 2012; Nyamukondiwa et al., 2018).

A number of molecular mechanisms have been implicated in acclimation and cold hardening processes, including production of heat shock proteins (Sørensen et al., 2003; Stoks & De Block, 2011), mucins, epigenetic regulation, detoxification and proteins involved in ion and water homeostasis (Lancaster et al., 2016; Enriquez & Colinet, 2019), and other transcriptome- and metabolome-wide changes (MacMillan et al., 2016) which are often highly labile within species (Lancaster et al., 2016).

Although the mechanisms which drive long-term acclimation vs. rapid cold hardening are not completely understood, studies have shown that these mechanisms may be physiologically independent of one another and may even be antagonistic (Rajamohan & Sinclair, 2009). Moreover, exposure to one extreme temperature (heat or cold) may also confer protective benefits or maladaptive consequences following exposure to the other extreme (Burton et al., 1988; Gotcha et al., 2018). Finally, exposure to stressful temperatures, especially over long durations, may weaken the ability of individuals to respond adaptively, resulting in maladaptive effects of prior thermal exposure at long exposure times or when experienced out of context (Buckley & Huey, 2016).

Previous studies have often investigated how the duration of extreme thermal events affects fitness (Rako & Hoffmann, 2006; Colinet et al., 2010; Semsar-Kazerouni & Verberk, 2018), how rearing temperatures interact with starting conditions to affect thermal tolerance (Marais et al., 2009; Nyamukondiwa & Terblanche, 2010), how repeated exposures to extreme heat or cold affect thermal tolerance, or how the duration of exposure affects survival (Macdonald et al., 2004; Knapp et al., 2018).

Despite an appreciation that physiological mechanisms of thermal hardening, maladaptive plasticity, and acclimation processes differ from each other, and that therefore long vs. short exposures to thermal extremes may have different subsequent effects on thermal tolerance, little has been done to directly investigate how the duration of previous exposure to a stressful or priming thermal event affects the capacity of an organism to respond to a subsequent thermal challenge, after a period of recovery (Waagner et al., 2013; Alemu et al., 2017).

Aims and experimental design

The aim of this research was to understand how the duration of an extreme temperature bout affects the capacity of individuals to withstand a future bout of thermal stress, via either adaptive hardening or maladaptive physiological plasticity. We tested the hypothesis that as duration of exposure to cold temperatures increased, so too the hardening response (i.e., ability to withstand a subsequent bout of cold). We further anticipated that short exposures to cold temperatures may produce different levels of future cold protection than longer durations of exposure, with longer durations of prior exposure potentially invoking more maladaptive responses to subsequent stressors than shorter-term prior exposures to the same priming temperature (Knapp et al., 2018). We furthermore questioned whether hardening responses could be achieved in as little as 30 min of exposure (Lee et al., 1987). Finally, we examined whether exposure to heat stress would provide a protective cold-tolerance response, and if this too depended on the duration of exposure.

Study system

Zygoptera (“damselflies”) are a suborder of Odonata which are known to have substantial phenotypic and ecological diversity, making them excellent study subjects for linking ecology, genomic and evolutionary research (Córdoba-Aguilar, 2008; Bybee et al., 2016). Blue-tailed damselflies (Ischnura elegans Vander Linden, 1820) are ubiquitous across Eurasia and are characteristic of mesotrophic to eutrophic permanent wetlands (Bouton et al., 2011). Climate plays a strong role in the distribution of I. elegans (Lancaster et al., 2015; Sánchez-Guillén et al., 2016; Fitt & Lancaster, 2017), and this species has been undergoing a rapid range shift in response to climate change (Hickling et al., 2006).

The recent range shift has affected changes in thermal tolerance of this species, with the result that cold tolerance
Application of thermal stress

in the duration of different extreme weather events into ac-
spatiotemporal estimations for shifts in thermal tolerance
and distributional shifts in this and other species (Sánchez-
Guillén et al., 2016; Fitt et al., 2019), when taking changes
in the duration of different extreme weather events into ac-
count.

METHODS

Experimental protocol

Larval *I. elegans* were collected from a series of ponds at
Midmar Trout Fishery, Aberdeenshire, UK (57°9’27.3’N,
2°30’10.63’W) during April–June 2018 using fine mesh nets and
transported to the laboratory in individual containers filled
with pond water. Once returned to the laboratory, each damselfly
was identified to species using (Cham, 2009). Head width in milli-
metres (precision to the nearest 0.01 mm) was measured using
a Yenway dissecting microscope (YenCam5/ISH500, China) and
Yencam associated image software, following Fitt & Lancaster,
(2017), as head width is a good proxy for body size in this spe-
cies. Head width was not positively correlated with capture date
(cor = –0.04, Kendall τ = –0.06, z = –1.26, P = 0.21). Each larva
was given a unique identification number. Damselflies were then
acclimated at 15°C for 7–9 days. During this period the larvae
were fed daily ad libitum with *Artemia* spp. and *Tubifex tubi-
flex*. Because damselfly larvae are cannibalistic, they were kept indi-
vidually in plastic containers (diameter of 6.5 cm and a height of
3 cm) with a piece of artificial pondweed as a perch.

Application of thermal stress

Each damselfly was allocated a treatment of either 2°C (non-
lethal stressful cold temperature typically experienced by wild
populations during cold snaps that can occur under winter and
early spring conditions; Krokowski, 2007), 15°C (average spring
pond temperature, assessed using HOBO onset pendant thermal
data loggers; Bourne, MA, USA) or 30°C (temperature equal to
that a wild population might experience in heat wave conditions;
Jackson et al., 2018) for a duration of zero hours (i.e., controls
retained at 15°C), 30 min, 2 h, or 24 h. Size distributions of larvae
were kept consistent across treatments (Table 1). After being held
at their designated acclimation temperature for the designated du-
ration, individuals were then returned to 15°C for a minimum of 2
h and a maximum of 3.5 h prior to assessing CTmin (see below).
This allowed individuals from both the 0.5 h exposure time and
the 2 h exposure times to re-acclimate before commencing ther-
mal trials. There was no difference in resulting thermal tolerance
between the 0.5 h and 2 h exposure durations (Table S1, Fig.
S1), confirming that variation in the reacclimation time did not
affect results. This 2 h re-acclimation at 15°C ensures that we are
testing the effect of prior thermal exposure on acclimation status,
as decoupled from effects of starting conditions, which can con-
found estimates of the acclimation response (Terblanche et al.,
2007). While a rapid transition from 15°C to 2°C is unlikely to
occur in freshwater bodies in nature within 30 min, this extreme
example was used to reveal short term, measurable changes in
CTmin in response to a brief cold snap.

Thermal tolerance

Knockdown temperature was chosen as the metric to establish
approximate critical thermal minima (CTmin). CTmin is the tem-
perature at which an individual cannot be deemed as function-
ally responsive and would therefore be unable to react to threats
such as predation or make use of resources to feed (Terblanche et
al., 2007). Cold tolerance trials were carried out on individuals
using a temperature-controlled water bath (Grant-TX150, Cam-
bridge, UK). Each larva was placed into an individually-labelled
50 ml test tube with 27 ml of sieved pond water (to remove sub-
strate) and suspended in the water bath, which was itself filled
with a mixture of water and propylene glycol to prevent freezing.
A maximum of 25 and minimum of 18 larvae were tested for
CTmin per trial. The water bath program commenced at 15°C
and reduced temperature at a rate of 0.1°C per minute. An ex-
ternal temperature probe, which was connected to the water bath
thermostat, was inserted into a control 50 ml test tube to ensure
that the cooling within the individual test tube proceeded at the
programmed rate. Once the bath temperature reached 11°C the
larvae were observed constantly, and individuals were gently
prodded every minute once activity ceased, to assess knock-down
temperature. This was characterised when larvae exhibited loss
of muscle coordination and could no longer respond to prodd-
ing. Once this unresponsive state was reached, the temperature
(CTmin) was recorded and the test-tube containing the individual
was then removed from the water bath. A total of 10 cold toler-
ance trials were run on 222 individual larvae between the 25th
of April and the 16th of June.

Statistical methods

All linear regression analyses were performed using linear
models in R version 3.4 (R Core Team, 2017). CTmin was used as
the response variable throughout, with fixed, explanatory effects
of head width (continuous), temperature (factor)*duration of ex-
posure (continuous) or temperature*duration^2 (modelled as an
orthogonal polynomial using the poly(x,2) function in R (Ken-
nedy Jr & Gentle, 1980; Zuur et al., 2010), and the day of year
(continuous) on which the damselflies were captured (to account
for seasonal effects on cold tolerance). For statistical analysis,
individuals retained at 15°C were assigned a duration of 0 min
for the test temperature (2°C or 30°C) run on the same day (2°C
and 30°C treatments were run on different days, always accompa-
nied by controls). To identify the best model, the corrected Akai-
ke Information Criterion was used to compare the full model to
reduced models (Burnham & Anderson, 2002; Mazerolle, 2016;
Fitt & Lancaster, 2017). We log(n+1) transformed the duration
values to conform to the assumptions of the parametric test. Due
to the inability of individuals to survive below 0 degrees, CTmin
values were modelled using a Gamma general linear model with
an identity link function. Variance inflation factors were calcu-
lated using the vif() function in the car package for R (Fox &
Weisberg, 2018), and were all found to be < 2. For plotting, sig-
nificant marginal quadratic or linear effects of duration were de-
picted separately for 2°C or 30°C prior treatment temperature. We
further modelled duration of exposure as a factor, and supple-
mental results are presented in the S.I.

RESULTS

Effect of acclimation temperature on subsequent
thermal tolerance

CTmin varied between 1.5 and 9.1°C across treatments
(Table 1). CTmin was best explained by head width, day of
year, temperature, duration of exposure, and an inter-
active effect of temperature × duration and temperature ×
duration’ (Tables 2, 3). In general, CTmin decreased (improved) with both size and day of year, reflecting a combination of ontogenetic and, potentially, seasonal environmental changes. Increasing duration of exposure at either of the stressful temperatures had significant effects on CTmin. Exposure to 2°C had beneficial effects on thermal tolerance at short timescales of prior exposure (30 min or 2 h), but these disappeared at longer prior exposure times (24 h) (Fig. 1A, C). In contrast, exposure to 30°C always worsened subsequent responses to cold (Fig. 1B, D). Outputs of comparable models in which duration was modelled as a factor are qualitatively similar (Table S1, Fig. S1).

DISCUSSION

The duration and frequency of thermal extreme events are increasing in response to global warming. Although effects of frequency of previous heat or cold exposures on subsequent thermal tolerance has been often characterised (Abram et al., 2017), the effect of duration of exposure to thermal extreme events on hardening processes is less well understood. Here we provide novel data indicating that the duration of a single extreme cold challenge event can differentially impact organisms’ capacity for response to future thermal challenges. Specifically, we found that short-term (~30 min – 2 h) exposure to challenging cold conditions (2°C) can produce a beneficial response, which then protects individuals against future cold weather challenges. However, we find that exposure to extreme ‘cold snaps’ over longer periods of time (at some point > 2 h and < 24 h) rapidly decreases the adaptive benefit of such exposures (Figs 1A, 1C, S1). These results are in accord with a Rapid Cold Hardening (RCH) effect, which requires a short duration of recent exposure in order to be effective. This implies that, for species which depend on rapid cold hardening to protect against damage from a future thermal stressor, increased duration of the initial hardening event will have deleterious consequences.

All exposure times to an extreme heat challenge (30°C) induced deleterious responses to a future cold challenge (Fig. 1B, D). These results fail to support the hypothesis that rapid hardening responses reflect a ‘generalised stress response’ that is transferrable to alternative thermal regimes (e.g., Burton et al., 1988). Instead, our data support the idea that stressful exposure to one extreme temperature may have detrimental effects on the ability to respond to the alternate extreme.

Our finding in this regard is similar to recent findings that increased duration of heat stress has a negative impact

Table 1. CTmin descriptive statistics for all treatments (°C).

<table>
<thead>
<tr>
<th>Duration</th>
<th>0.5 (h)</th>
<th>2 (h)</th>
<th>24 (h)</th>
<th>0.5 (h)</th>
<th>2 (h)</th>
<th>24 (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>2°C</td>
<td>2°C</td>
<td>2°C</td>
<td>30°C</td>
<td>30°C</td>
<td>30°C</td>
</tr>
<tr>
<td>N</td>
<td>22</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>Head width (mm ± SE)</td>
<td>2.94 ± 0.52</td>
<td>2.80 ± 0.63</td>
<td>2.95 ± 0.55</td>
<td>2.98 ± 0.60</td>
<td>2.87 ± 0.66</td>
<td>2.76 ± 0.62</td>
</tr>
<tr>
<td>Mean</td>
<td>3.1</td>
<td>3.9</td>
<td>3.8</td>
<td>4.6</td>
<td>5.0</td>
<td>5.4</td>
</tr>
<tr>
<td>St. Dev.</td>
<td>1.8</td>
<td>2.2</td>
<td>1.1</td>
<td>1.4</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Min</td>
<td>1.5</td>
<td>1.7</td>
<td>1.7</td>
<td>2.7</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Pctl(25)</td>
<td>1.7</td>
<td>2.3</td>
<td>3.0</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Pctl(75)</td>
<td>4.0</td>
<td>4.6</td>
<td>4.4</td>
<td>4.9</td>
<td>5.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Max</td>
<td>6.9</td>
<td>9.1</td>
<td>6.1</td>
<td>7.6</td>
<td>7.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table 2. Best fit model predictors for cold tolerance (CTmin) response.

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Coefficient Estimate</th>
<th>Standard Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.27</td>
<td>0.97</td>
<td>8.49</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Head Width (mm)</td>
<td>0.46</td>
<td>0.18</td>
<td>-2.53</td>
<td>0.01**</td>
</tr>
<tr>
<td>Day of year (continuous)</td>
<td>0.02</td>
<td>0.006</td>
<td>-3.93</td>
<td>0.001***</td>
</tr>
<tr>
<td>log(Duration of thermal acclimation (h) (1))</td>
<td>0.95</td>
<td>2.26</td>
<td>0.42</td>
<td>0.67</td>
</tr>
<tr>
<td>log(Duration (2))</td>
<td>7.05</td>
<td>2.16</td>
<td>3.27</td>
<td>0.001**</td>
</tr>
<tr>
<td>Temperature (30°C vs 2°C)</td>
<td>1.22</td>
<td>0.22</td>
<td>5.51</td>
<td>0.0001***</td>
</tr>
<tr>
<td>log(Duration (1) * Temperature)</td>
<td>3.45</td>
<td>3.29</td>
<td>1.05</td>
<td>0.30</td>
</tr>
<tr>
<td>log(Duration (2) * Temperature)</td>
<td>-8.93</td>
<td>3.11</td>
<td>-2.88</td>
<td>0.004**</td>
</tr>
</tbody>
</table>

*** p < 0.001; ** p < 0.01; * p < 0.05.

Table 3. Model comparisons.

<table>
<thead>
<tr>
<th>Included explanatory variables</th>
<th>AICc</th>
<th>∆AICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (30°C vs 2°C) + poly(log(Duration,2)) + head width + day of year</td>
<td>823.8</td>
<td>0</td>
</tr>
<tr>
<td>Temperature * poly(Duration,2) + day of year</td>
<td>828.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Temperature + log(Duration) + head width + day of year</td>
<td>831.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Temperature * log(Duration) + head width + day of year</td>
<td>831.2</td>
<td>7.4</td>
</tr>
<tr>
<td>Temperature + head width + day of year</td>
<td>834.9</td>
<td>11.1</td>
</tr>
<tr>
<td>Temperature + poly(Duration,2) + head width</td>
<td>837.7</td>
<td>13.9</td>
</tr>
<tr>
<td>Temperature + head width + duration</td>
<td>838.6</td>
<td>14.8</td>
</tr>
<tr>
<td>Duration + head width + day of year</td>
<td>848.9</td>
<td>25.1</td>
</tr>
</tbody>
</table>
on future cold tolerance in the soil arthropod Orchesella cincta (Alemu et al., 2017). However, unlike in our study, Alemu et al. report a lack of detrimental effects of increasing cold stress duration on future cold tolerance, which may reflect differences among the studies in the degree of cold stress applied (4°C in the previous study, vs. 2°C in the present study) or differences in thermal capacity between freshwater and terrestrial environments. More work is needed to further investigate how the duration of thermal stress affects cold tolerance across different species which have limited dispersal mechanisms and are therefore more sensitive to environmental thermal change (Hering et al., 2009). Therefore, investigating the implications of interspecific or inter-populational differences in effects of duration on acclimation capacity of aquatic invertebrates at different life stages can contribute to better understanding of how changing durations of extreme weather events under climate change can impact freshwater communities and ecosystems.

REFERENCES

Fig. 1. Changes in CTmin (°C) as a function of the duration of a previous exposure to 2°C (a, c) or 30°C (b, d). Panels a, b represent boxplots of raw CTmin values. Panels c, d represent marginal effects of the polynomial log(Duration) term on CTmin, in models that account for effects of head width and day of year. Panels c, d were plotted using the effects package for R (Fox et al., 2015).

Duration of exposure in a, b expressed in hours.

Lancaster L.T., Dudaniec R.Y., Chauhan P., Wellenreuther M., Svensson E.I. & Hansson B. 2016: Gene expression under...

Lancaster L.T., Morrison G. & Fitt R.N. 2017b: Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. — Phil. Trans. R. Soc. (B) 372: 20160046, 10 pp.

Mazerolle M.J. 2016: AICmodavg: Model Selection and Multimodel Inference Based on (Q) AIC (r). R Package Ver. 2.0-3. URL: https://cran.r-project.org/package=AICmodavg.

Woodward G., Perkins D.M. & Brown L.E. 2010: Climate change and freshwater ecosystems: impacts across multiple levels of organization. — Phil. Trans. R. Soc. (B) 365: 2093–2106.

Received June 19, 2019; revised and accepted February 5, 2020

Published online February 17, 2020

Supplementary analysis. Modelling the duration of thermal exposure as a factor reveals congruent results to analyses where duration is treated as a continuous variable, see Table S1 and Fig. S1 below.
Table S1. Pairwise, interactive comparisons of temperature and durations where both duration and temperature are modelled as factors, where significant effects are highlighted at a Bonferroni-corrected alpha of 0.016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effect</th>
<th>S.E.</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (0 vs. 0.5 h)</td>
<td>-1.63</td>
<td>0.45</td>
<td>-3.58</td>
<td>0.0004</td>
</tr>
<tr>
<td>Duration (0 vs. 2 h)</td>
<td>-1.22</td>
<td>0.47</td>
<td>-2.60</td>
<td>0.01</td>
</tr>
<tr>
<td>Duration (0 vs. 24 h)</td>
<td>-0.49</td>
<td>0.44</td>
<td>-1.11</td>
<td>0.27</td>
</tr>
<tr>
<td>Duration (0.5 vs. 2 h)</td>
<td>0.41</td>
<td>0.47</td>
<td>0.86</td>
<td>0.39</td>
</tr>
<tr>
<td>Duration (0.5 vs. 24 h)</td>
<td>1.14</td>
<td>0.45</td>
<td>2.54</td>
<td>0.01</td>
</tr>
<tr>
<td>Duration (2 vs. 24 h)</td>
<td>0.73</td>
<td>0.46</td>
<td>1.58</td>
<td>0.11</td>
</tr>
<tr>
<td>Duration (0 vs. 0.5 h) × Temperature (30 vs. 0°C)</td>
<td>1.97</td>
<td>0.60</td>
<td>3.30</td>
<td>0.0010</td>
</tr>
<tr>
<td>Duration (0 vs. 2 h) × Temperature (30 vs. 0°C)</td>
<td>1.73</td>
<td>0.60</td>
<td>2.86</td>
<td>0.0050</td>
</tr>
<tr>
<td>Duration (0 vs. 24 h) × Temperature (30 vs. 0°C)</td>
<td>1.42</td>
<td>0.58</td>
<td>2.45</td>
<td>0.01</td>
</tr>
<tr>
<td>Duration (0.5 vs. 2 h) × Temperature (30 vs. 0°C)</td>
<td>-0.24</td>
<td>0.61</td>
<td>-0.40</td>
<td>0.69</td>
</tr>
<tr>
<td>Duration (0.5 vs. 24 h) × Temperature (30 vs. 0°C)</td>
<td>-0.55</td>
<td>0.59</td>
<td>-0.94</td>
<td>0.35</td>
</tr>
<tr>
<td>Duration (2 vs. 24 h) × Temperature (30 vs. 0°C)</td>
<td>-0.31</td>
<td>0.60</td>
<td>-0.52</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Fig. S1. Effects of duration (h) × temperature (30°C = red, 2°C = blue) of prior exposure on subsequent CTmin (°C). Differing letters along the top indicate durations which differ in their effects on CTmin within each treatment (letters along top for the 30°C treatment, letters along the bottom for the 2°C treatment). Asterisks indicate the time points at which the treatments differ in their effects on CTmin.