Eur. J. Entomol. 122: 242-248, 2025 | DOI: 10.14411/eje.2025.030

Differential frequency of autotomy in two colour morphs of the grasshopper Atractomorpha lata (Orthoptera: Pyrgomorphidae) on dense and sparse grass substratesOriginal article

Jun-Ya IDE ORCID...
Department of Education and Creation Engineering, Kurume Institute of Technology, 2228-66 Kamitsu-machi, Kurume, Fukuoka 830-0052, Japan; e-mail: idejy@kurume-it.ac.jp

Background colour matching is considered highly effective in preventing the detection of an animal by visual predators. In a grasshopper species with green-brown polymorphism, a green morph on grass and a brown morph on bare ground or dead litter may be difficult for visual predators to distinguish from their respective backgrounds. However, few studies have examined the effects of background colour on the predation susceptibility of green and brown morphs of grasshoppers under natural conditions. In this study, the frequency of injuries including autotomy in the green-brown polyphenic grasshopper Atractomorpha lata was compared between two substrates: dense green grass and sparse grass (i.e., mixed cover consisting of 50% green grass and 50% bare soil or dead litter). More than half of injuries were hind-limb autotomy. The frequency of injuries was higher on dense grass for the brown morph than for the green morph, but on sparse grass it was higher for the green morph than for the brown morph. Because autotomy in orthopterans is almost always caused by birds, we conclude that background colour matching in A. lata functions as camouflage against predators with colour vision, such as birds.

Keywords: Background matching, body colour, camouflage, injury, polymorphism, predation

Received: December 19, 2024; Revised: August 28, 2025; Accepted: August 28, 2025; Published online: September 26, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
IDE, J. (2025). Differential frequency of autotomy in two colour morphs of the grasshopper Atractomorpha lata (Orthoptera: Pyrgomorphidae) on dense and sparse grass substrates. EJE122, Article 242-248. https://doi.org/10.14411/eje.2025.030
Download citation

References

  1. Bartoñ K. 2023: MuMIn: Multi-Model Inference. R Package Version 1.47.5. URL: https://doi.org/10.32614/CRAN.package.MuMIn Go to original source...
  2. Bateman P.W. & Fleming P.A. 2006a: Sex and the single (-eared) female: leg function, limb autotomy and mating history trade-offs in field crickets (Gryllus bimaculatus). - Biol. Lett. 2: 33-35. Go to original source...
  3. Bateman P.W. & Fleming P.A. 2006b: Increased susceptibility to predation for autotomized house crickets (Acheta domestica). - Ethology 112: 670-677. Go to original source...
  4. Bateman P.W. & Fleming P.A. 2008: An intra- and interspecific study of body size and autotomy as a defense in Orthoptera. - J. Orth. Res. 17: 315-320. Go to original source...
  5. Bateman P.W. & Fleming P.A. 2011: Frequency of tail loss reflects variation in predation levels, predator efficiency, and the behaviour of three populations of brown anoles. - Biol. J. Linn. Soc. 103: 648-656. Go to original source...
  6. Belovsky G.E., Slade J.B. & Stockhoff B.A. 1990: Susceptibility to predation for different grasshoppers: an experimental study. - Ecology 71: 624-634. Go to original source...
  7. Bröder L., Tatin L. & Hochkirch A. 2023: Quantifying predation to insects: An experimental approach. - Glob. Ecol. Conserv. 44: e02485, 10 pp. Go to original source...
  8. Bryant H.C. 1914: Birds as destroyers of grasshoppers in California. - Auk 31: 168-177. Go to original source...
  9. Cherrill A. & Brown V. 1997: Sublethal injuries in a field population of the bush cricket Decticus verrucivorus (L.) (Tettigoniidae) in southern England. - J. Orth. Res. 6: 175-177. Go to original source...
  10. Chung M.G., Kang S.S. & Yeeh Y. 1997: Genetic structure in Korean populations of Atractomorpha lata (Orthoptera: Pyrgomorphidae). - Kor. J. Biol. Sci. 1: 535-538.
  11. Civantos E., Ahnesjö J., Forsman A., Martín J. & López P. 2004: Indirect effects of prey coloration on predation risk: pygmy grasshoppers versus lizards. - Evol. Ecol. Res. 6: 201-213.
  12. Cook L.M., Grant B.S., Saccheri I.J. & Mallet J. 2012: Selective bird predation on the peppered moth: the last experiment of Michael Majerus. - Biol. Lett. 8: 609-612. Go to original source...
  13. Cooper W.E., Pérez-Mellado V. & Vitt L.J. 2004: Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. - J. Zool. 262: 243-255. Go to original source...
  14. Cuthill I.C. 2019: Camouflage. - J. Zool. 308: 75-92. Go to original source...
  15. Dawkins M. 1971: Perceptual changes in chicks: Another look at the 'search image' concept. - Anim. Behav. 19: 566-574. Go to original source...
  16. Dimitrova M. & Merilaita S. 2010: Prey concealment: visual background complexity and prey contrast distribution. - Behav. Ecol. 21: 176-181. Go to original source...
  17. Dixon K.A. 1989: Effect of leg type and sex on autotomy in the Texas bush katydid, Scudderia texensis. - Can. J. Zool. 67: 1607-1609. Go to original source...
  18. Duarte R.C., Stevens M. & Flores A.A.V. 2018: The adaptive value of camouflage and colour change in a polymorphic prawn. - Sci. Rep. 8: 16028, 10 pp. Go to original source...
  19. Edmunds M. & Grayson J. 1991: Camouflage and selective predation in caterpillar of the poplar and eyed hawkmoths (Laothoe populi and Smerinthus ocellata). - Biol. J. Linn. Soc. 42: 467-480. Go to original source...
  20. Emberts Z., Miller C.W., Kiehl D. & St. Mary C.M. 2017: Cut your losses: self-amputation of injured limbs increases survival. - Behav. Ecol. 28: 1047-1054. Go to original source...
  21. Emberts Z., Escalante I. & Bateman P.W. 2019: The ecology and evolution of autotomy. - Biol. Rev. 94: 1881-1896. Go to original source...
  22. Emberts Z., St. Mary C.M., Howard C.C., Forthman M., Bateman P.W., Somjee U., Hwang W.S., Li D., Kimball R.T. & Miller C.W. 2020: The evolution of autotomy in leaf-footed bugs. - Evolution 74: 897-910. Go to original source...
  23. Fleming P.A., Muller D. & Bateman P.W. 2007: Leave it all behind: a taxonomic perspective of autotomy in invertebrates. - Biol. Rev. 82: 481-510. Go to original source...
  24. Forsman A., Ringblom K., Civantos E. & Ahnesjö J. 2002: Coevolution of color pattern and thermoregulatory behavior in polymorphic pygmy grasshoppers Tetrix undulata. - Evolution 56: 349-360. Go to original source...
  25. Fujimori M. 1990: Life history of Atractomorpha lata with special reference to growth and reproduction. - Insectarium 27: 96-104.
  26. Hazel W., Ante S. & Stringfellow B. 1998: The evolution of environmentally-cued pupal colour in swallowtail butterflies: natural selection for pupation site and pupal colour. - Ecol. Entomol. 23: 41-44. Go to original source...
  27. Heinze P., Dieker P., Rowland H.M. & Schielzeth H. 2022: Evidence for morph-specific substrate choice in a green-brown polymorphic grasshopper. - Behav. Ecol. 33: 17-26. Go to original source...
  28. Hidaka T., Kimura T. & Onosaka M. 1959: Experiments on the protective coloration of pupae of the swallowtail, Papilio xuthus L. - Zool. Mag. 68: 222-226.
  29. Ide J.-Y. 2006: Sexual and seasonal differences in the frequency of beak marks on the wings of two Lethe butterflies. - Ecol. Res. 21: 453-459. Go to original source...
  30. Ide J.-Y. 2022: Why do red/purple young leaves suffer less insect herbivory: tests of the warning signal hypothesis and the undermining of insect camouflage hypothesis. - Arthropod-Plant Interact. 16: 567-581. Go to original source...
  31. Joern A. 1986: Experimental study of avian predation on coexisting grasshopper populations (Orthoptera: Acrididae) in sandhills grassland. - Oikos 46: 243-249. Go to original source...
  32. Kiritani K., Yamashita H. & Yamamura K. 2013: Beak marks on butterfly wings with special reference to Japanese black swallowtail. - Popul. Ecol. 55: 451-459. Go to original source...
  33. Köhler G. & Schielzeth H. 2020: Green-brown polymorphism in alpine grasshoppers affects body temperature. - Ecol. Evol. 10: 441-450. Go to original source...
  34. Krueger T., Bateman P.W., Fleischmann A. & Cross A.T. 2023: Better to risk limb than life: some insects use autotomy to escape passive predation by carnivorous plants. - Arthropod-Plant Interact. 17: 593-599. Go to original source...
  35. Kuo C.-Y. & Irschick D.J. 2016: Ecology drives natural variation in an extreme antipredator trait: a cost-benefit analysis integrating modelling and field data. - Funct. Ecol. 30: 953-963. Go to original source...
  36. Maginnis T.L. 2008: Autotomy in a stick insect (Insecta: Phasmida): predation versus molting. - Fla Entomol. 91: 126-127. Go to original source...
  37. McKillup S.C. & McKillup R.V. 2002: Flies that attack polymorphic snails on coloured backgrounds: selection for crypsis by a sarcophagid parasitoid of Littoraria filose. - Biol. J. Linn. Soc. 77: 367-377. Go to original source...
  38. McKillup S.C. & McKillup R.V. 2008: Apostasy and selection for crypsis in the marine snail Littoraria filosa: an explanation for a balanced colour polymorphism. - Biol. J. Linn. Soc. 95: 62-71. Go to original source...
  39. Medel R.G., Jimenez J.E., Fox S.F. & Jaksic F.M. 1988: Experimental evidence that high population frequencies of lizard tail autotomy indicate inefficient predation. - Oikos 53: 321-324. Go to original source...
  40. Merilaita S. 2003: Visual background complexity facilitates the evolution of camouflage. - Evolution 57: 1248-1254. Go to original source...
  41. Miura K. & Ohsaki N. 2015: The cost of autotomy caused by the parasitoid fly Blaesoxipha japonensis (Diptera: Sarcophagidae): an interspecific comparison between two sympatric grasshopper host species. - Ecol. Res. 30: 33-39. Go to original source...
  42. Miyatake Y. & Kano Y. 1992: Introductory to Identification Keys for Cicadas and Grasshoppers in Japan. Hoikusha, Osaka, 215 pp. [in Japanese].
  43. Morey S.R. 1990: Microhabitat selection and predation in the Pacific treefrog, Pseudacris regilla. - J. Herpetol. 24: 292-296. Go to original source...
  44. Moura M.R., Costa H.C., Abegg A.D., Alaminos E., Angarita-Sierra T., Azevedo W.S., Cabral H., Carvalho P., Cechin S., Citeli N., Dourado Â.C.M., Duarte A.F.V., França F.G.R., Freire E.M.X., Garcia P.C.A., Mol R., Montero R., Moraes-da-Silva A., Passos D.C., Passos P., Perez R., Pleguezuelos J.M., Prado P., Prudente A.L.C., Sales R.F.D., Santana D.J., Santos L.C., Silva V.T.C., Sudré V., Torres-Carvajal O., Torres-Ramírez J.J., Wallach V., Winck G.R. & Guedes J.J.M. 2023: Unwrapping broken tails: Biological and environmental correlates of predation pressure in limbless reptiles. - J. Anim. Ecol. 92: 324-337. Go to original source...
  45. Murdoch W.W. & Oaten A. 1975: Predation and population stability. - Adv. Ecol. Res. 9: 1-131. Go to original source...
  46. Muse W. & Ono T. 1996: Copulatory behavior and post-copulatory mate guarding in a grasshopper Atractomorpha lata Motschulsky (Orthoptera: Tetrigidae) under laboratory conditions. - Appl. Entomol. Zool. 31: 233-241. Go to original source...
  47. Nishida T. 2008: No Need to Fear Predators. Yasaka Shobo, Tokyo, 206 pp. [in Japanese].
  48. Otte P.J., Cromsigt J.P.G.M., Smit C. & Hofmeester T.R. 2024: Snow cover-related camouflage mismatch increases detection by predators. - J. Exp. Zool. (A) 341: 327-337. Go to original source...
  49. Pellissier L., Wassef J., Bilat J., Brazzola G., Buri P., Colliard C., Fournier B., Hausser J., Yannic G. & Perrin N. 2011: Adaptive colour polymorphism of Acrida ungarica H. (Orthoptera: Acrididae) in a spatially heterogeneous environment. - Acta Oecol. 37: 93-98. Go to original source...
  50. R Core Team 2020: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, URL: https://www.R-project.org/
  51. Rich C., Reilly S.B. & Sinervo B. 2021: Relaxed predation selection on rare morphs of Ensatina salamanders (Caudata: Plethodontidae) promotes a polymorphic population in a novel dune sand habitat. - Biol. J. Linn. Soc. 132: 643-654. Go to original source...
  52. Rowe Z.W., Austin D.J.D., Chippington N., Flynn W., Starkey F., Wightman E.J., Scott-Samuel N.E. & Cuthill I.C. 2021: Background complexity can mitigate poor camouflage. - Proc. R. Soc. (B) 288: 20212029, 6 pp. Go to original source...
  53. Rowell C.H.F. 1972: The variable coloration of the acridoid grasshoppers. - Adv. Insect Physiol. 8: 145-198. Go to original source...
  54. Sadiq A. & Kodandaramaiah U. 2023: Hiding among colors: background color diversity impedes detection time. - Behav. Ecol. 34: 831-839. Go to original source...
  55. Sandoval C.P. 1994: Differential visual predation on morphs of Timema cristinae (Phasmatodeae: Timemidae) and its consequences for host range. - Biol. J. Linn. Soc. 52: 341-356. Go to original source...
  56. Schielzeth H. 2020: Phylogenetic, geographic and ecological distribution of a green-brown polymorphisms in European orthopterans. - bioRxiv preprint. URL: https://doi.org/10.1101/2020.1103.1131.016915 Go to original source...
  57. Sims S.R. & Shapiro A.M. 1983: Pupal color dimorphism in California Battus philenor (L.) (Papilionidae): mortality factors and selective advantage. - J. Lepid. Soc. 37: 236-243.
  58. Stevens M. & Merilaita S. 2009: Animal camouflage: current issues and new perspectives. - Phil. Trans. R. Soc. (B) 364: 423-427. Go to original source...
  59. Stoutjesdijk P. 1980: The range of micrometeorological diversity in the biological environment. - Int. J. Biometeorol. 24: 211-215. Go to original source...
  60. Tanaka Y. 2008: Effects of temperature on body color change in the grasshopper Atractomorpha lata (Orthoptera: Pyrgomorphidae) with reference to sex differences in color morph frequencies. - Entomol. Sci. 11: 49-54. Go to original source...
  61. Tinbergen L. 1960: The natural control of insects in pine woods I. Factors influencing the intensity of predation by songbirds. - Arch. Néerl. Zool. 13: 265-343. Go to original source...
  62. Tsurui K., Narita S., Iwatani Y. & Honma A. 2014: Change in take-off elevation angle after limb autotomy mitigates the reduction in jumping distance in rice grasshoppers Oxya yezoensis. - Entomol. Sci. 17: 181-190. Go to original source...
  63. Vignieri S.N., Larson J.G. & Hoekstra H.E. 2010: The selective advantage of crypsis in mice. - Evolution 64: 2153-2158. Go to original source...
  64. Wiklund C. 1975: Pupal colour polymorphism in Papilio machaon L. and the survival in the field of cryptic versus non-cryptic pupae. - Trans. R. Entomol. Soc. Lond. 127: 73-84. Go to original source...
  65. Yamamoto N. & Sota T. 2020: Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle. - Proc. R. Soc. (B) 287: 20202315, 10 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.