Eur. J. Entomol. 119: 232-241, 2022 | DOI: 10.14411/eje.2022.025
Effect of solvent extraction time on the hydrocarbon profile of Drosophila suzukii (Diptera: Drosophilidae) and behavioural effects of 9-pentacosene and dodecaneOriginal article
- 1 Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete, Panepistimioupoli Vouton, 70013 Heraklion, Crete, Greece; e-mails: maria.belenioti@uoc.gr, fouskakm@uoc.gr, chaniotakis@uoc.gr
- 2 Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC 71410, Heraklion, Crete, Greece; e-mail: eroditakis@hmu.gr
- 3 Laboratory of Organic Chemistry, Department of Chemistry, University of Crete, Panepistimioupoli Vouton, 70013 Heraklion, Crete, Greece; e-mail: msofiadis@gmail.com
- 4 Laboratory of Environmental Chemistry, Department of Chemistry, University of Crete, Panepistimioupoli Vouton, 70013 Heraklion, Crete, Greece; e-mail: apostolm@uoc.gr
Hydrocarbons play a major role in the life cycle of insects. Their composition and concentration can be affected by several factors. Hydrocarbons are biosynthesized in oenocytes and subsequently transported to the cuticle of insects, such as Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). As the extraction procedure markedly affects the type and amount of hydrocarbon obtained we determined the association between the time taken to extract the maximum amounts of these compounds and the behaviour of D. suzukii. The required extraction time to reach a steady state is different for each hydrocarbon, which in most cases is more than one hour. On the other hand, if the entire hydrocarbon profile of D. suzukii needs to be investigated, extraction times significantly longer than one hour were required. By extending the extraction time 5 additional hydrocarbons were detected in D. suzukii for the first time. One of them, dodecane proved to be repulsive to D. suzukii. In addition, it took 3 h of extraction to determine the maximum value of 9-pentacosene, which is responsible for triggering mating behaviour in D. suzukii.
Keywords: Cuticle hydrocarbons, bioassays, extraction steady state
Received: August 31, 2021; Revised: June 24, 2022; Accepted: June 24, 2022; Published online: July 26, 2022 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Al-Khshemawee H., Du X., Agarwal M., Yang J.O. & Ren Y.L. 2018: Application of direct immersion solid-phase microextraction (DI-SPME) for understanding biological changes of Mediterranean fruit fly (Ceratitis capitata) during mating procedures. - Molecules 23: 2951, 13 pp.
Go to original source... - Bagneres A.G. & Morgan E.D. 1990: A simple method for analysis of insect cuticular hydrocarbons. - J. Chem. Ecol. 12: 3263-3276.
Go to original source... - Barron A.B. 2000: Anaesthetizing Drosophila for behavioural studies. - J. Insect Physiol. 46: 439-442.
Go to original source... - Bartelt R.J. & Jackson L.L. 1984: Hydrocarbon component of the Drosophila virilis (Diptera: Drosophilidae) aggregation pheromone: (Z)-10-Heneicosene. - Ann. Entomol. Soc. Am. 77: 364-371.
Go to original source... - Belenioti M. & Chaniotakis N. 2020: Aggressive behaviour of Drosophila suzukii in relation to environmental and social factors. - Sci. Rep. 10: 7898, 10 pp.
Go to original source... - Blomquist G. 2010a: Biosynthesis of cuticular hydrocarbons. In Blomquist G.J. & Bagnères A.G. (eds): Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press, UK, pp. 35-52.
Go to original source... - Blomquist G. 2010b: Structure and analysis of insect hydrocarbons. In Blomquist G.J. & Bagnères A.G. (eds): Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press, UK, pp. 19-34.
Go to original source... - Blomquist G., Nelson D. & Derenobales M. 1987: Chemistry, biochemistry, and physiology of insect cuticular lipids. - Arch. Insect Biochem. Physiol. 6: 227-265.
Go to original source... - Carvalho M., Sampaio J.L., Palm W., Brankatschk M., Eaton S. & Shevchenk A. 2012: Effects of diet and development on the Drosophila lipidome. - Mol. Syst. Biol. 8: 600, 17 pp.
Go to original source... - Cerkowniak M., Puckowski A., Stepnowski P. & Gołębiowski M. 2013: The use of chromatographic techniques for the separation and the identification of insect lipids. - J. Chromatogr. (B, Analyt. Technol. Biomed. Life Sci.) 937: 67-78.
Go to original source... - Choe D.H., Ramírez S.R. & Tsutsui N.D. 2012: A silica gel based method for extracting insect surface hydrocarbons. - J. Chem. Ecol. 2: 176-187.
Go to original source... - Cvacka J., Jiros P., Sobotnik J., Hanus R.V. & Svatos A. 2006: Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. - J. Chem. Ecol. 32: 409-434.
Go to original source... - Gołębiowski M., Bogu¶ M.I., Paszkiewicz M. & Stepnowski P. 2011: Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. - Anal. Bioanal. Chem. 399: 3177-3191.
Go to original source... - Dekker T., Revadi S., Mansourian S., Ramasamy S., Lebreton S., Paul G., Becher Angeli S., Rota-Stabell O. & Anfora G. 2015: Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. - Proc. Biol. Sci. 282(1804): 20143018, 9 pp.
Go to original source... - Devaud J.M. 2003: Experimental studies of adult Drosophila chemosensory behavior. - Behav. Processes 64: 177-196.
Go to original source... - Dossey A.T., Walse S.S., Rocca J.R. & Edison A.S. 2006: Single-insect NMR: a new tool to probe chemical biodiversity. - ACS Chem. Biol. 1: 511-514.
Go to original source... - Drijfhout F.P., Kather R. & Martin S.J. 2009: The role of cuticular hydrocarbons in insects. In Zhang W. & Liu H. (eds): Behavioral and Chemical Ecology. Nova Science, Hauppauge, pp. 91-114.
- Enjin A. & Bae Suh G.S. 2013: Neural mechanisms of alarm pheromone signaling. - Mol. Cells 35: 177-181.
Go to original source... - Everaerts C., Farine J.P., Cobb M. & Ferveur J.F. 2010: Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. - PLoS ONE 5(3): e9607, 12 pp.
Go to original source... - Farine J.P., Ferveur J.F. & Everaerts C. 2012: Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. - PLoS ONE 7(7): e40396, 11 pp.
Go to original source... - Fedina T.Y., Kuo T-H., Dreisewerd K., Dierick H.A., Yew J.Y. & Pletcher S.D. 2012: Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. - PLoS ONE 7(12): e49799, 11 pp.
Go to original source... - Gershman S.N., Toumishey E. & Rundle H.D. 2014: Time flies: time of day and social environment affect cuticular hydrocarbon sexual displays in Drosophila serrata. - Proc. R. Soc. (B) 281: 20140821, 8 pp.
Go to original source... - Gibbs A.G. & Markow T.A. 2001: Effects of age on water balance in Drosophila species. - Physiol. Biochem. Zool. 74: 520-530.
Go to original source... - Gibbs A.G., Fukuzato F. & Matzkin L.M. 2003: Evolution of water conservation mechanisms in Drosophila. - J. Exp. Biol. 206: 1183-1192.
Go to original source... - Hallem E.A & Carlson J.R. 2006: Coding of odors by a receptor repertoire. - Cell 125: 143-160.
Go to original source... - Haruhito K. & Haruo C. 1982: Transport of hydrocarbons by the lipophorin of insect hemolymph. - Biochim. Biophys. Acta 710: 341-348.
Go to original source... - Holze H., Schrader L. & Buellesbach J. 2021: Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. - J. Hered. 126: 219-234.
Go to original source... - Howard R.W. 1982: Chemical ecology and biochemistry of insect hydrocarbons. - Annu. Rev. Entomol. 27: 149-172.
Go to original source... - Howard R.W. & Blomquist G.J. 2005: Ecological, behavioral, and biochemical aspects of insect hydrocarbons. - Annu. Rev. Entomol. 50: 371-393.
Go to original source... - Hwee S.N., Shankara S., Shikichic Y., Akasakad K., Moric K. & Yewa Y.J. 2014: Pheromone evolution and sexual behavior in Drosophila are shaped by male sensory exploitation of other males. - Proc. Natn. Acad. Sci. U.S.A. 25: 3056-3061.
Go to original source... - Koemans T.S., Oppitz C., Donders R.A., Bokhoven H., Schenck A., Keleman K. & Kramer J.M. 2017: Drosophila courtship conditioning as a measure of learning and memory. - J. Vis. Exp. 124: e55808, 11 pp.
Go to original source... - Kou R., Tang D.S. & Chow Y.S. 1989: Alarm pheromone of pentatomid bug, Erthesina fullo Thunberg (Hemiptera: Pentatomidae). - J. Chem. Ecol. 15: 2695-2702.
Go to original source... - Kuo T.H., Yew J.Y., Fedina T.Y., Dreisewerd K., Dierick H.A. & Pletcher S.D. 2012: Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. - J. Exp. Biol. 5: 814-821.
Go to original source... - Knapp L., Mazzi D. & Finger R. 2020: The economic impact of Drosophila suzukii: perceived costs and revenue losses of Swiss cherry, plum and grape growers. - Pest Manag. Sci. 77: 3597-3597.
Go to original source... - Lee J.C., Bruck D.J., Curry H., Edwards D., Haviland D.R., Van Steenwyk R.A. & Yorgey B.M. 2011a: The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. - Pest Manag. Sci. 67: 1358-1367.
Go to original source... - Levi-Zada A., Nestel D., Fefer D., Nemni-Lavy E., Deloya-Kahane I. & Maayan D. 2012: Analyzing diurnal and age-related pheromone emission of the olive fruit fly, Bactrocera oleae by sequential SPME-GCMS analysis. - J. Chem. Ecol. 38: 1036-1041.
Go to original source... - Lofqvist J. 1976: Formic acid and saturated hydrocarbons as alarm pheromones for the ant Formica rufa. - J. Insest Physiol. 22: 1331-1346.
Go to original source... - Montell C. 2009: A taste of the Drosophila gustatory receptors. - Curr. Opin. Neurobiol. 19: 345-353.
Go to original source... - Moris V.C., Christmann K., Wirtgen A., Belokobylskij S.A., Berg A., Liebig W., Soon V., Baur H., Schmitt T. & Niehuis O. 2021: Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes. - Chemoecology 31: 311-322.
Go to original source... - Revadi S., Lebreton S., Witzgall P., Anfora G., Dekker T. & Becher P.G. 2015: Sexual behavior of Drosophila suzukii. - Insects 6: 183-196.
Go to original source... - Schal C., Sevala V., Young H. & Bachmann J.A.S. 1998: Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. - Am. Zool. 38: 382-393.
Go to original source... - Schal C., Sevala V., Capurro M.L., Snyder T.E., Blomquist G.J. & Bagnères A.G. 2001: Tissue distribution and lipophorin transport of hydrocarbons and sex pheromones in the house fly, Musca domestica. - J. Insect Sci. 1: 12, 11 pp.
Go to original source... - Siwicki K.K., Riccio P., Ladewski L., Marcillac F., Dartevelle L., Cross S.A. & Ferveur J.F. 2005: The role of cuticular pheromones in courtship conditioning of Drosophila males. - Learn. Mem. 12: 636-645.
Go to original source... - Sledge M.F., Boscaro F. & Turillazzi S. 2001: Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. - Behav. Ecol. Sociobiol. 49: 401-409.
Go to original source... - Snellings Y., Herrera B., Wildermann B., Beelen M., Zwarts L., Wenseleers T. & Callaerts P. 2018: The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. - Sci. Rep. 8: 4996, 11 pp.
Go to original source... - Tillman J.A., Seybold S.J., Jurenka R.A. & Blomquist G.J. 1999: Insect pheromones - an overview of biosynthesis and endocrine regulation. - Insect Biochem. Mol. Biol. 29: 481-514.
Go to original source... - Vander Meer R.K., Saliwanchik D. & Lavine B. 1989: Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta. Implications for nestmate recognition. - J. Chem. Ecol. 15: 2115-2125.
Go to original source... - Vang L. & Adler J. 2016: Drosophila mutants that are motile but respond poorly to all stimuli tested. - bioRχiv 045062, 17 pp.
Go to original source... - Vang L.L., Medvedev A.V. & Adler J. 2012: Simple ways to measure behavioral responses of Drosophila to stimuli and use of these methods to characterize a novel mutant. - PLoS ONE 7(5): e37495, 11 pp.
Go to original source... - Vieillard D.A. & Cortot J. 2016: When choice makes sense: menthol influence on mating, oviposition and fecundity in Drosophila melanogaster. - Front. Integr. Neurosci. 10: 5, 11 pp.
Go to original source... - Walsh D.B., Bolda M.P., Goodhow R.E, Dreves A.J., Lee J., Bruck D.V., Walton M., O'Neal S.D. & Zalom F.G. 2011: Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. - J. Integr. Pest Manag. 106: 289-295.
Go to original source... - Welzel K.F., Lee S.H., Dossey A.T., Chauhan K.R. & Choe D.H. 2018: Verification of argentine ant defensive compounds and their behavioral effects on heterospecific competitors and conspecific nestmates. - Sci. Rep. 8: 1477, 15 pp.
Go to original source... - Yew J.Y. & Chung H. 2015: Insect pheromones: an overview of function, form and discovery. - Prog. Lipid Res. 59: 88-105.
Go to original source... - Yew J.Y., Cody R.B. & Kravitz E.A. 2008: Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time-of-flight mass spectrometry. - Proc. Natl. Acad. Sci. U.S.A. 105: 7135-7140.
Go to original source... - Yew J.Y., Dreisewerd K., Oliveira C.C. de & Etges W.J. 2011a: Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. - PLoS ONE 6(9): e16898, 15 pp.
Go to original source... - Yew J.Y., Soltwisch J., Pirkl A. & Dreisewerd K. 2011b: Direct laser desorption ionization of endogenous and exogenous compounds from insect cuticles: practical and methodologic aspects. - J. Am. Soc. Mass Spectrom. 22: 1273-1284.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.


ORCID...