Eur. J. Entomol. 119: 12-22, 2022 | DOI: 10.14411/eje.2022.002
The circadian clock gene (Clock) regulates photoperiodic time measurement and its downstream process determining maternal induction of embryonic diapause in a cricketIvo Hodek special issueOriginal article
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; e-mails: shingoto@osaka-cu.ac.jp, nagatamsts@gmail.com
In response to short days in autumn, most temperate multivoltine insects enter diapause, a state in which development or reproduction is suppressed or arrested, which serves to coordinate their development and physiology (or that of offspring) with annual changes in the environment (i.e. photoperiodism). This response is mediated by a measurement of time based on photoperiod (photoperiodic time measurement), which is thought to be regulated by a circadian clock. However, some studies also demonstrate the involvement of the circadian clock in an output process that generates phenotypes associated with diapause. To gain further insight into this, we silenced the Clock (Clk) gene, the main regulator of the circadian clock, in the band-legged ground cricket Dianemobius nigrofasciatus (Orthoptera: Trigonidiidae). Silencing the Clk gene using RNA interference (Clk RNAi) in female crickets resulted in abnormal circadian rhythms under constant darkness and light-dark conditions, thereby indicating the central role of this gene in the circadian clock mechanism. Clk RNAi females exhibited long-day oviposition behaviour, even when reared under short-day conditions, thereby indicating the involvement of Clk in photoperiodic time measurement. In addition, Clk RNAi females immediately laid non-diapause-type eggs, which was not recorded in control females under either short-day or long-day conditions and cannot be explained in terms of dysfunction of photoperiodic time measurement. Accordingly, we speculate that Clk could also be involved in a downstream process that results in the laying of diapause-type eggs.
Keywords: Orthoptera, Trigonidiidae, Dianemobius nigrofasciatus, band-legged ground cricket, circadian clock gene, Clock, embryonic diapause, locomotor activity rhythm, photoperiodic time measurement, RNA interference (RNAi)
Received: November 4, 2021; Revised: December 15, 2021; Accepted: December 15, 2021; Published online: January 7, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
This paper was contributed to a virtual special issue in memory of Ivo Hodek, a long-time editor of the European Journal of Entomology, who died on June 11, 2021, shortly after his ninetieth birthday.
Download citation
References
- Allada R., White N.E., So W.V., Hall J.C. & Rosbash M. 1998: A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. - Cell 93: 791-804.
Go to original source...
- Bajgar A., Dolezel D. & Hodkova M. 2013a: Endocrine regulation of non-circadian behavior of circadian genes in insect gut. - J. Insect Physiol. 59: 881-886.
Go to original source...
- Bajgar A., Jindra M. & Dolezel D. 2013b: Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. - Proc. Natl. Acad. Sci. U.S.A. 110: 4416-4421.
Go to original source...
- Barberà M., Collantes-Alegre J.M. & Martínez-Torres D. 2017: Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. - Insect Biochem. Mol. Biol. 83: 54-67.
Go to original source...
- Bradshaw W.E. & Holzapfel C.M. 2010: Circadian clock genes, ovarian development and diapause. - BMC Biol. 8: 115, 4 pp.
Go to original source...
- Bünning E. 1936: Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. - Ber. Dtsch. Bot. Ges. 54: 590-607.
Go to original source...
- Cui W.-Z., Qiu J.-F., Dai T.-M., Chen Z., Li J.-L., Liu K., Wang Y.-J., Sima Y.-H. & Xu S.-Q. 2021: Circadian clock gene period contributes to diapause via GABAeric-diapause hormone pathway in Bombyx mori. - Biology (Basel) 10: 842, 20 pp.
Go to original source...
- Danks H.V. 1987: Insect Dormancy: An Ecological Perspective. Biological Survey of Canada, Ottawa, 439 pp.
- Darlington T.K., Wager-Smith K., Ceriani M.F., Staknis D., Gekakis N., Steeves T.D.L., Weitz C.J., Takahashi J.S. & Kay S.A. 1998: Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. - Science 280: 1599-1603.
Go to original source...
- Denlinger D.L., Yocum G.D. & Rinehart J.P. 2012: Hormonal control of diapause. In Gilbert L.I. (ed.): Insect Endocrinology. Elsevier, Amsterdam, pp. 430-463.
Go to original source...
- Emerson K.J., Bradshaw W.E. & Holzapfel C.M. 2009: Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. - Trends Genet. 25: 217-225.
Go to original source...
- Goto S.G., Doi K., Nakayama S. & Numata H. 2008: Maternal control of cold and desiccation tolerance in eggs of the band-legged ground cricket Dianemobius nigrofasciatus in relation to embryonic diapause. - Entomol. Res. 38: 17-23.
Go to original source...
- Hao K., Jarwar A.R., Ullah H., Tu X., Nong X. & Zhang Z. 2019a: Transcriptome sequencing reveals potential mechanisms of the maternal effect on egg diapause induction of Locusta migratoria. - Int. J. Mol. Sci. 20: 1974, 19 pp.
Go to original source...
- Hao K., Tu X., Ullah H., McNeill M.R. & Zhang Z. 2019b: Novel Lom-dh genes play potential role in promoting egg diapause of Locusta migratoria L. - Front. Physiol. 10: 767, 14 pp.
Go to original source...
- Iiams S.E., Lugena A.B., Zhang Y., Hayden A.N. & Merlin C. 2019: Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. - Proc. Natl. Acad. Sci. U.S.A. 116: 25214-25221.
Go to original source...
- Ikeda M., Su Z., Saito H., Imai K., Sato Y., Isobe M. & Yamashita O. 1993: Induction of embryonic diapause and stimulation of ovary trehalase activity in the silkworm, Bombyx mori, by synthetic diapause hormone. - J. Insect Physiol. 39: 889-895.
Go to original source...
- Ikeda K., Daimon T., Shiomi K., Udaka H. & Numata H. 2021: Involvement of the clock gene period in the photoperiodism of the silkmoth Bombyx mori. - Zool. Sci. 38: 523-530.
Go to original source...
- Ikeno T., Tanaka S.I., Numata H. & Goto S.G. 2010: Photoperiodic diapause under the control of circadian clock genes in an insect. - BMC Biol. 8: 116, 9 pp.
Go to original source...
- Ikeno T., Numata H. & Goto S.G. 2011a: Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. - J. Insect Physiol. 57: 935-938.
Go to original source...
- Ikeno T., Numata H. & Goto S.G. 2011b: Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. - Biochem. Biophys. Res. Commun. 410: 394-397.
Go to original source...
- Ikeno T., Ishikawa K., Numata H. & Goto S.G. 2013: Circadian clock gene Clock is involved in the photoperiodic response of the bean bug Riptortus pedestris. - Physiol. Entomol. 38: 157-162.
Go to original source...
- Kamae Y., Tanaka F. & Tomioka K. 2010: Molecular cloning and functional analysis of the clock genes, Clock and cycle, in the firebrat Thermobia domestica. - J. Insect Physiol. 56: 1291-1299.
Go to original source...
- Kidokoro T. & Masaki S. 1978: Photoperiodic response in relation to variable voltinism in the ground cricket, Pteronemobius fascipes Walker (Orthoptera: Gryllidae). - Japan. J. Ecol. 28: 291-298.
- Kilman V.L. & Allada R. 2009: Genetic analysis of ectopic circadian clock induction in Drosophila. - J. Biol. Rhythms 24: 368-378.
Go to original source...
- Ko¹»ál V. 2006: Eco-physiological phases of insect diapause. - J. Insect Physiol. 52: 113-127.
Go to original source...
- Kotwica-Rolinska J., Pivarciova L., Vaneckova H. & Dolezel D. 2017: The role of circadian clock genes in the photoperiodic timer of the linden bug Pyrrhocoris apterus during the nymphal stage. - Physiol. Entomol. 42: 266-273.
Go to original source...
- Letunic I., Khedkar S. & Bork P. 2021: SMART: recent updates, new developments and status in 2020. - Nucl. Acids Res. 49: D458-D460.
Go to original source...
- Masaki S. 1960: Thermal relations of diapause in the eggs of certain crickets (Orthoptera: Gryllidae). - Bull. Fac. Agric. Hirosaki Univ. 6: 5-20.
- Meuti M.E., Stone M., Ikeno T. & Denlinger D.L. 2015: Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. - J. Exp. Biol. 218: 412-422.
Go to original source...
- Mohamed A.A.M., Wang Q., Bembenek J., Ichihara N., Hiragaki S., Suzuki T. & Takeda M. 2014: N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi. - PLoS ONE 9: e92680, 14 pp.
Go to original source...
- Moriyama Y., Kamae Y., Uryu O. & Tomioka K. 2012: Gb'Clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus. - J. Biol. Rhythms 27: 467-477.
Go to original source...
- Mukai A. & Goto S.G. 2016: The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). - Appl. Entomol. Zool. 51: 185-194.
Go to original source...
- Patke A., Young M.W. & Axelrod S. 2020: Molecular mechanisms and physiological importance of circadian rhythms. - Nat. Rev. Mol. Cell Biol. 21: 67-84.
Go to original source...
- Pegoraro M., Gesto J.S., Kyriacou C.P. & Tauber E. 2014: Role for circadian clock genes in seasonal timing: Testing the Bünning hypothesis. - PLoS Genet. 10: e1004603, 9 pp.
Go to original source...
- Rubin E.B., Shemesh Y., Cohen M., Elgavish S., Robertson H.M. & Bloch G. 2006: Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. - Genome Res. 16: 1352-1365.
Go to original source...
- Sakamoto T., Uryu O. & Tomioka K. 2009: The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. - J. Biol. Rhythms 24: 379-390.
Go to original source...
- Saunders D.S. 2020: Dormancy, diapause, and the role of the circadian system in insect photoperiodism. - Annu. Rev. Entomol. 65: 373-389.
Go to original source...
- Saunders D.S., Henrich V.C. & Gilbert L.I. 1989: Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. - Proc. Natl. Acad. Sci. U.S.A. 86: 3748-3752.
Go to original source...
- Shao Q.M., Bembenek J., Trang L.T.D., Hiragaki S. & Takeda M. 2008: Molecular structure, expression patterns, and localization of the circadian transcription modulator CYCLE in the cricket, Dianemobius nigrofasciatus. - J. Insect Physiol. 54: 403-413.
Go to original source...
- Shao Q.M., Sehadová H., Ichihara N., Sehnal F. & Takeda M. 2006: Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure. - J. Biol. Rhythms 21: 118-131.
Go to original source...
- Shiga S. & Numata H. 1996: Effects of compound eye-removal on the photoperiodic response of the band-legged ground cricket, Pteronemobius nigrofasciatus. - J. Comp. Physiol. (A) 179: 625-633.
Go to original source...
- Shiga S. & Numata H. 1997: Seasonal changes in the incidence of embryonic diapause in the band-legged ground cricket, Dianemobius nigrofasciatus. - Zool. Sci. 14: 1015-1018.
Go to original source...
- Shiga S., Numata H. & Yoshioka E. 1999: Localization of the photoreceptor and pacemaker for the circadian activity rhythm in the band-legged ground cricket, Dianemobius nigrofasciatus. - Zool. Sci. 16: 193-201.
Go to original source...
- Sokolove P.G. & Bushell W.N. 1978: The chi square periodogram: Its utility for analysis of circadian rhythms. - J. Theor. Biol. 72: 131-160.
Go to original source...
- Takekata H., Numata H., Shiga S. & Goto S.G. 2014: Silencing the circadian clock gene Clock using RNAi reveals dissociation of the circatidal clock from the circadian clock in the mangrove cricket. - J. Insect Physiol. 68: 16-22.
Go to original source...
- Tamai T., Shiga S. & Goto S.G. 2019: Roles of the circadian clock and endocrine regulator in the photoperiodic response of the brown-winged green bug Plautia stali. - Physiol. Entomol. 44: 43-52.
Go to original source...
- Tanigawa N., Matsumoto K., Yasuyama K., Numata H. & Shiga S. 2009: Early embryonic development and diapause stage in the band-legged ground cricket Dianemobius nigrofasciatus. - Dev. Genes Evol. 219: 589-596.
Go to original source...
- Tauber M.J., Tauber C.A. & Masaki S. 1986: Seasonal Adaptations of Insects. Oxford University Press, Oxford, 416 pp.
- Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., et al. 2007: Natural selection favors a newly derived timeless allele in Drosophila melanogaster. - Science 316: 1895-1898.
Go to original source...
- Tomioka K. 2014: Chronobiology of crickets: a review. - Zool. Sci. 31: 624-632.
Go to original source...
- Tomioka K. & Matsumoto A. 2015: Circadian molecular clockworks in non-model insects. - Curr. Opin. Insect Sci. 7: 58-64.
Go to original source...
- Urbanová V., Bazalová O., Vanìèková H. & Dole¾el D. 2016: Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. - Insect Biochem. Mol. Biol. 70: 184-190.
Go to original source...
- Vaz Nunes M. & Saunders D. 1999: Photoperiodic time measurement in insects: A review of clock models. - J. Biol. Rhythms 14: 84-104.
Go to original source...
- Yamada H. & Yamamoto M.T. 2011: Association between circadian clock genes and diapause incidence in Drosophila triauraria. - PLoS ONE 6: e27493, 9 pp.
Go to original source...
- Zhao J., Kilman V.L., Keegan K.P., Peng Y., Emery P., Rosbash M. & Allada R. 2003: Drosophila clock can generate ectopic circadian clocks. - Cell 113: 755-766.
Go to original source...
- Zhu L., Tian Z., Guo S., Liu W., Zhu F. & Wang X.P. 2019: Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi. - Insect Biochem. Mol. Biol. 104: 1-10.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.