Eur. J. Entomol. 118: 355-363, 2021 | DOI: 10.14411/eje.2021.037
Characterization of the immune induced antimicrobial peptide in Drosophila melanogaster and Drosophila ananassae Original article
- Department of Applied Zoology, Kuvempu University, Shankaraghatta, Shivamogga, 577451 Karnataka, India; e-mails: meghanaik1992@gmail.com, knagarajv@gmail.com
Insects can recognize invading pathogens and initiate an immune response. Among them, Drosophila has emerged as an invertebrate model for investigating innate immune responses in which antimicrobial peptides play a crucial role. In the present study, immune-induced antimicrobial peptides were characterized in D. melanogaster and D. ananassae using the agar well diffusion method, HPLC, SDS-PAGE and LC-MS/MS after infection with either S. aureus or E. coli. The HPLC revealed two and three differentially induced components, respectively, in D. melanogaster and D. ananassae flies infected with S. aureus and E. coli. The tricine SDS-PAGE analysis also revealed two and five differentially induced proteins, respectively, in D. melanogaster and D. ananassae infected with E. coli. In E. coli infected flies, the ~6 kDa band was produced at higher level. Based on LCMS/MS and Mascot analysis, the peptide was identified as a putative cecropin A-like peptide, and the data suggested that both species of Drosophila have exhibited a clear immune response. The flies were also able to discriminate between bacteria, as this putative cecropin A-like peptide was produced in flies infected with E. coli but not S. aureus.
Keywords: Diptera, Drosophilidae, Drosophila, immune response, antimicrobial peptide, LC-MS/MS, cecropin A, haemolymph
Received: July 3, 2021; Revised: October 28, 2021; Accepted: October 28, 2021; Published online: November 29, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Baenas N. & Wagner A.E. 2019: Drosophila melanogaster as an alternative model organism in nutrigenomics. - Genes Nutr. 14: 1-11.
Go to original source...
- Bhagavathula N., Meedidoddi V., Bourque S., Vimaladevi R., Kesavakurup S., Selvadurai D., Shrivastava S. & Krishnappa C. 2017: Characterization of two novel antimicrobial peptides from the cuticular extracts of the ant Trichomyrmex criniceps (Mayr), (Hymenoptera: Formicidae). - Arch. Insect Biochem. Physiol. 94(4): e21381, 8 pp.
Go to original source...
- Boulanger N., Munks R.J., Hamilton J.V., Vovelle F., Brun R., Lehane M.J. & Bulet P. 2002: Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. - J. Biol. Chem. 277: 49921-49926.
Go to original source...
- Brady D., Grapputo A., Romoli O. & Sandrelli F. 2019: Insect cecropins, antimicrobial peptides with potential therapeutic applications. - Int. J. Mol. Sci. 20(23): 5862, 22 pp.
Go to original source...
- Lazzaro B.P. & Clark A.G. 2003: Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. - Mol. Biol. Evol. 20: 914-923.
Go to original source...
- Buonocore F., Fausto A.M., Della Pell G., Roncevic T., Gerdol M. & Picchietti S. 2021: Attacins: A promising class of insect antimicrobial peptides. - Antibiotics 10(2): 212, 12 pp.
Go to original source...
- Damrau C., Toshima N., Tanimura T., Brembs B. & Colomb J. 2018: Octopamine and tyramine contribute separately to the counter-regulatory response to sugar deficit in Drosophila. - Front. Syst. Neurosci. 11: 100, 11 pp.
Go to original source...
- Dhar G. & Mishra M. 2020: Comet assay to detect the severity of DNA damage in Drosophila. In Mishra M. (ed.): Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Nature, pp. 87-96.
Go to original source...
- Felsenstein J. 1985: Confidence limits on phylogenies: An approach using the bootstrap. - Evolution 39: 783-791.
Go to original source...
- Feng M., Xia J., Fei S., Peng R., Wang X., Zhou Y., Wang P., Swevers L. & Sun J. 2021: Identification of silkworm hemocyte subsets and analysis of their response to baculovirus infection based on single-cell RNA sequencing. - Front. Immunol. 12: 645359, 16 pp.
Go to original source...
- Fu H., Björstad A., Dahlgren C. & Bylund J. 2004: A bactericidal cecropin-A peptide with a stabilized alpha-helical structure possess an increased killing capacity but no proinflammatory activity. - Inflammation 28: 337-343.
Go to original source...
- Gromova I. & Celis J.E. 2006: Protein detection in gels by silver staining: a procedure compatible with mass-spectrometry, in cell biology. In Celis J.E., Carter N., Hunter T., Shotton D., Simons K. & Small J.V. (eds): Cell Biology. A Laboratory Handbook. Vol. 4. Academic Press, San Diego, CA, pp. 219-223.
Go to original source...
- Hanson M.A., Hamilton P.T. & Perlman S.J. 2016: Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila. - BMC Evol. Biol. 16: 228, 14 pp.
Go to original source...
- Hodgins-Davis A. & Townsend J.P. 2009: Evolving gene expression: from G to E to GxE. - Trends Ecol. Evol. 24: 649-658.
Go to original source...
- Jones D.T., Taylor W.R. & Thornton J.M. 1992: The rapid generation of mutation data matrices from protein sequences. - CABIOS 8: 275-282.
Go to original source...
- Kaladchibachi S., Secor M.A., Negelspach D.C. & Fernandez F. 2019: Longitudinal study of sleep and diurnal rhythms in Drosophila ananassae. - Exp. Gerontol. 116: 74-79.
Go to original source...
- Kapila R., Kashyap M., Poddar S., Gangwal S. & Prasad N.G.G. 2021: Evolution of pathogen-specific improved survivorship post-infection in populations of Drosophila melanogaster adapted to larval crowding. - PLoS ONE 16(4): e0250055, 11 pp.
Go to original source...
- Khalil S., Jacobson E., Chambers M.C. & Lazzaro B.P. 2015: Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster. - J. Vis. Exp. 99: e52613, 9 pp.
Go to original source...
- Kim S.R., Hong M.Y., Park S.W., Choi K.H., Yun E.Y., Goo T.W., Kang S.W., Suh H.J., Kim I. & Hwang J.S. 2010: Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. - Mol. Cells 29: 419-423.
Go to original source...
- Kumar S. & Singh A.K. 2017: Population genetics of Drosophila: Genetic variation and differentiation among Indian natural populations of Drosophila ananassae. - Zool Stud. 56: 1, 10 pp.
- Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018: MEGA X: Molecular evolutionary genetics analysis across computing platforms. - Mol. Biol. Evol. 35: 1547-1549.
Go to original source...
- Laemmli U.K. 1970: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680-685.
Go to original source...
- Landon C., Meudal H., Boulanger N., Bulet P. & Vovelle F. 2006: Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. - Biopolymers 81: 92-103.
Go to original source...
- Lemaitre B., Reichhart J.M. & Hoffmann J.A. 1997: Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. - Proc. Natl. Acad. Sci. U.S.A. 94: 14614-14619.
Go to original source...
- Li T., Yan D., Wang X., Zhang L. & Chen P. 2019: Hemocyte changes during immune melanization in Bombyx mori infected with Escherichia coli. - Insects 10(9): 301, 15 pp.
Go to original source...
- Lowenberger C., Charlet M., Vizioli J., Kamal S., Richman A., Christensen B.M. & Bulet P. 1999: Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. - J. Biol. Chem. 274: 20092-20097.
Go to original source...
- Lye S.H. & Chtarbanova S. 2018: Drosophila as a model to study brain innate immunity in health and disease. - Int. J. Mol. Sci. 19(12): 3922, 14 pp.
Go to original source...
- Manniello M.D., Moretta A., Salvia R., Scieuzo C., Lucchetti D., Vogel H., Sgambato A. & Falabella P. 2021: Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. - Cell. Mol. Life Sci. 78: 4259-4282.
Go to original source...
- Meghashree R.N. & Nagaraj K. 2020: Evaluation of antibacterial immune response in Drosophila melanogaster and Drosophila ananassae. - Indian J. Exp. Biol. 11: 751-759.
- Mylonakis E., Podsiadlowski L., Muhammed M. & Vilcinskas A. 2016: Diversity, evolution and medical applications of insect antimicrobial peptides.- Phil. Trans. R. Soc. Lond. (B) 371: 20150290, 11 pp.
Go to original source...
- Park S. & Yoe S.M. 2017: A novel cecropin-like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization. - Entomol. Res. 47: 115-124.
Go to original source...
- Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. 2019: The PRIDE database and related tools and resources in 2019: improving support for quantification data. - Nucl. Acids Res. 47: D442-D450.
Go to original source...
- Salazar-Jaramillo L., Jalvingh K.M., Haan A., Kraaijeveld K., Buermans H. & Wertheim B. 2017: Inter- and intra-species variation in genome-wide gene expression of Drosophila in response to parasitoid wasp attack. - BMC Genomics 18: 331, 14 pp.
Go to original source...
- Samakovlis C., Asling B., Boman H.G., Gateff E. & Hultmark D. 1992: In vitro induction of cecropin genes - an immune response in a Drosophila blood cell line. - Biochem. Biophys. Res. Commun. 188: 1169-1175.
Go to original source...
- Schägger H. 2006: Tricine-SDS-PAGE. - Nat. Protoc. 1: 16-22.
Go to original source...
- Sewify G.H., Hamada H.M. & Alhadrami H.A. 2017: In vitro evaluation of antimicrobial activity of alimentary canal extracts from the red palm weevil, Rhynchophorus ferrugineus olivier larvae. - BioMed Res. Int. 2017: 8564601, 6 pp.
Go to original source...
- Sheehan G., Garvey A., Croke M. & Kavanagh K. 2018: Innate humoral immune defences in mammals and insects: The same, with differences? - Virulence 9: 1625-1639.
Go to original source...
- Singh B.N. & Yada J.P. 2015: Status of research on Drosophila ananassae at global level. - J. Genet. 94: 785-792.
Go to original source...
- Singh P., Narula P. & Azad S. 2020: Analysis of genetic diversity in Indian natural populations of Drosophila ananassae. - Front. Biosci. 12: 237-253.
Go to original source...
- Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Takeda K. & Akira S. 1999: Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. - Immunity 11: 443-451.
Go to original source...
- Tassanakajon A., Somboonwiwat K. & Amparyup P. 2015: Sequence diversity and evolution of antimicrobial peptides in invertebrates. - Dev. Comp. Immunol. 48: 324-341.
Go to original source...
- Thurmond J., Goodman J.L., Strelets V.B., Attrill H., Gramates L.S., Marygold S.J., Matthews B.B., Millburn G., Antonazzo G., Trovisco V. et al. (FlyBase consortium) 2019: FlyBase 2.0: the next generation. - Nucl. Acids Res. 47: D759-D765.
Go to original source...
- Troha K., Nagy P., Pivovar A., Lazzaro B.P., Hartley P.S. & Buchon N. 2019: Nephrocytes remove microbiota - Derived peptidoglycan from systemic circulation to maintain immune homeostasis. - Immunity 51: 625-637.
Go to original source...
- UniProt 2021a: Proteomes - Drosophila ananassae (Fruit fly). URL: https://www.uniprot.org/proteomes/UP000007801/ (last accessed 1 Jul. 2021).
- UniProt 2021b: UniProtKB cecropin. URL: https://www.uniprot.org/uniprot/?query=cecropin+&sort=score (last accessed 24 Jun. 2021).
- Wen Y., He Z., Xu T., Jiao Y., Liu X., Wang Y.F. & Yu X.Q. 2019: Ingestion of killed bacteria activates antimicrobial peptide genes in Drosophila melanogaster and protects flies from septic infection. - Dev. Comp. Immunol. 95: 10-18.
Go to original source...
- Wu J., Mu L., Zhuang L., Han Y., Liu T., Li J., Yang Y., Yang H. & Wei L. 2015: A cecropin-like antimicrobial peptide with anti-inflammatory activity from the black fly salivary glands. - Parasit. Vectors 8: 561, 13 pp.
Go to original source...
- Wu Q., Patoèka J. & Kuèa K. 2018: Insect antimicrobial peptides, a mini review. - Toxins 10(11): 461, 17 pp.
Go to original source...
- Yuchen H., Qing K., Haijin M. & Huaxi Y. 2020: Antimicrobial peptides: Classification, design, application and research progress in multiple fields. - Front. Microbiol. 11: 582779, 21 pp.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.