Eur. J. Entomol. 116: 468-476, 2019 | DOI: 10.14411/eje.2019.048

Sexual differences in the morphology and movement of a butterfly: Good shape does not make good dispersersOriginal article

Elisabeth REIM1, Fee WIDDERICH1, Klaus FISCHER2
1 Zoological Institute and Museum, Greifswald University, Soldmannstraße 14, D-17489 Greifswald, Germany; e-mail: elisabeth.reim@uni-greifswald.de, f.widderich@hotmail.de
2 Institute for Integrated Natural Sciences, University Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany; e-mail: Klausfischer@uni-koblenz.de

Movements are involved in several routine processes and may scale up to important ecological processes such as dispersal. However, movement is affected by a wealth of factors including flight capacity and behavioural traits. Both frequently differ in the sexes, which may well affect movement. We here aim to disentangle the relative importance of sexual differences in flight capacity versus behaviour on small-scale movements under controlled laboratory conditions in the temperate-zone butterfly Lycaena tityrus. The morphology of males is typically associated with increased flight capacity in this species. Nevertheless, the flight performances of the sexes did not differ, but the mobility of the females was higher. Thus, flight capacity and patterns of movement may not be intimately associated. Rather, the costs and benefits of flight seem to differ substantially between the sexes, with females being more mobile, potentially as a risk spreading strategy, while males are territorial and thus more sedentary. Thus, predictions regarding movement based on morphology are difficult.

Keywords: Lepidoptera, Lycaenidae, Lycaena tityrus, dispersal, flight capacity, flight performance, sexual dimorphism, territoriality

Received: April 4, 2019; Accepted: November 13, 2019; Published online: December 9, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
REIM, E., WIDDERICH, F., & FISCHER, K. (2019). Sexual differences in the morphology and movement of a butterfly: Good shape does not make good dispersers. EJE116, Article 468-476. https://doi.org/10.14411/eje.2019.048
Download citation

References

  1. Almbro M. & Kullberg C. 2012: Weight loading and reproductive status affect the flight performance of Pieris napi butterflies. - J. Insect Behav. 25: 441-452. Go to original source...
  2. Arrese E.L. & Soulages J.L. 2010: Insect fat body: Energy, metabolism, and regulation. - Annu. Rev. Entomol. 55: 207-225. Go to original source...
  3. Baguette M., Stevens V.M. & Clobert J. 2014: The pros and cons of applying the movement ecology paradigm for studying animal dispersal. - Mov. Ecol. 2: 1-13. Go to original source...
  4. Berwaerts K. & Van Dyck H. 2004: Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria. - Oecologia 141: 536-545. Go to original source...
  5. Berwaerts K., Van Dyck H. & Aerts P. 2002: Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. - Funct. Ecol. 16: 484-491. Go to original source...
  6. Berwaerts K., Aerts P. & Van Dyck H. 2006: On the sex-specific mechanisms of butterfly flight: Flight performance relative to flight morphology, wing kinematics, and sex in Pararge aegeria. - Biol. J. Linn. Soc. 89: 675-687. Go to original source...
  7. Betts C.R. & Wootton R.J. 1988: Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. - J. Exp. Biol. 138: 271-288. Go to original source...
  8. Blanckenhorn W.U. 2000: The evolution of body size. What keeps organisms small? - Quart. Rev. Biol. 75: 385-407. Go to original source...
  9. Bohonak A.J. 1999: Dispersal, gene flow, and population structure. - Quart. Rev. Biol. 74: 21-45. Go to original source...
  10. Bonte D., Van Dyck H., Bullock J.M., Coulon A., Delgado M., Gibbs M., Lehouck V., Matthysen E., Mustin K. & Saastamoinen M. et al. 2012: Costs of dispersal. - Biol. Rev. 87: 290-312. Go to original source...
  11. Brunzel S., Bussmann M. & Obergruber H. 2008: Deutliche Veränderungen von Tagfalterzönosen als Folge von Ausbreitungsprozessen. Erste Ergebnisse eines Monitorings über 17 Jahre. - Natur Landsch. 6: 280-287.
  12. Cote J., Clobert J., Brodin T., Fogarty S. & Sih A. 2010a: Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. - Philos. Trans. R. Soc. (B) 365: 4065-4076. Go to original source...
  13. Cote J., Fogarty S., Weinersmith K., Brodin T. & Sih A. 2010b: Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). - Proc. R. Soc. (B) 277: 1571-1579. Go to original source...
  14. Davies N.B. 1978: Territorial defence in the speckled wood butterfly (Pararge aegeria): The resident always wins. - Anim. Behav. 26: 138-147. Go to original source...
  15. Dingemanse N.J., Both C., van Noordwijk A.J., Rutten A.L. & Drent P.J. 2003: Natal dispersal and personalities in great tits (Parus major). - Proc. R. Soc. (B) 270: 741-747. Go to original source...
  16. Ducatez S., Legrand D., Chaput-Bardy A., Stevens V.M., Fréville H. & Baguette M. 2012: Inter-individual variation in movement: Is there a mobility syndrome in the large white butterfly Pieris brassicae? - Ecol. Entomol. 37: 377-385. Go to original source...
  17. Ducatez S., Baguette M., Trochet A., Chaput-Bardy A., Legrand D., Stevens V. & Fréville H. 2013: Flight endurance and heating rate vary with both latitude and habitat connectivity in a butterfly species. - Oikos 122: 601-611. Go to original source...
  18. Ducatez S., Humeau A., Congretel M., Fréville H. & Baguette M. 2014: Butterfly species differing in mobility show different structures of dispersal-related syndromes in the same fragmented landscape. - Ecography 37: 378-389. Go to original source...
  19. Duckworth R.A. & Badyaev A.V. 2007: Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. - Proc. Natl. Acad. Sci. U.S.A. 104: 15017-15022. Go to original source...
  20. Dudley R. 2000: The Biomechanics of Insect Flight. Princeton University Press, Pinceton, 496 pp. Go to original source...
  21. Eaton J.L. 1988: Lepidopteran Anatomy. John Wiley and Sons, New York, 257 pp.
  22. Ebert G. & Rennwald E. 1991: Die Schmetterlinge Baden-Württembergs. Vol. 2. Ulmer, Stuttgart, 535 pp.
  23. Fischer K. & Fiedler K. 2000a: Methodische Aspekte von Fang-Wiederfangstudien am Beispiel der Feuerfalter Lycaena helle und L. hippothoe. - Beitr. Ökol. 4: 157-172.
  24. Fischer K. & Fiedler K. 2000b: Sex-related differences in reaction norms in the butterfly Lycaena tityrus (Lepidoptera: Lycaenidae). - Oikos 90: 372-380. Go to original source...
  25. Fischer K. & Fiedler K. 2001: Resource-based territoriality in the butterfly Lycaena hippothoe and environmentally induced behavioural shifts. - Anim. Behav. 61: 723-732. Go to original source...
  26. Fischer K., Beinlich B. & Plachter H. 1999: Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lycaenidae) in Western Germany: Implications for conservation. - J. Insect Conserv. 52: 43-52. Go to original source...
  27. Fischer K., Brakefield P.M. & Zwaan B.J. 2003: Plasticity in butterfly egg size: Why larger offspring at lower temperatures? - Ecology 84: 3138-3147. Go to original source...
  28. Fraser D.F., Gilliam J.F., Daley M.J., Le A.N. & Skalski G.T. 2001: Explaining leptokurtic movement distributions: Intrapopulation variation in boldness and exploration. - Am. Nat. 158: 124-135. Go to original source...
  29. Gilchrist G.W. 1990: The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. - Funct. Ecol. 4: 475-487. Go to original source...
  30. Günter F., Beaulieu M., Brunetti M., Lange L., Schmitz Ornés A. & Fischer K. 2019: Latitudinal and altitudinal variation in ecologically important traits in a widespread butterfly. - Biol. J. Linn. Soc. 20: 1-14. Go to original source...
  31. Hassall C. 2015: Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera). - Peer J. 3: e1219, 13 pp. Go to original source...
  32. Hill J.K., Thomas C.D. & Blakeley D.S. 1999: Evolution of flight morphology in a butterfly that has recently expanded its geographic range. - Oecologia 121: 165-170. Go to original source...
  33. Honek A. 1993: Intraspecific variation in body size and fecundity in insects: A general relationship. - Oikos 66: 483-492. Go to original source...
  34. Hopper K.R. 1999: Risk-spreading and bet-hedging in insect population biology. - Annu. Rev. Entomol. 44: 535-560. Go to original source...
  35. Hovestadt T. & Nieminen M. 2009: Costs and benefits of dispersal in butterflies. In Settele J., Shreeve T., Konvièka M. & Van Dyck H. (eds): Ecology of Butterflies in Europe. Cambridge University Press, Cambridge, pp. 97-106.
  36. Hughes C.L., Hill J.K. & Dytham C. 2003: Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. - Proc. R. Soc. (B) 270: S147-S150. Go to original source...
  37. Karl I. & Fischer K. 2008a: Why get big in the cold? Towards a solution to a life-history puzzle. - Oecologia 155: 215-225. Go to original source...
  38. Karl I., Janowitz S.A. & Fischer K. 2008b: Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. - Oikos 117: 778-788. Go to original source...
  39. Karl I., Stoks R., De Block M., Janowitz S.A. & Fischer K. 2011: Temperature extremes and butterfly fitness: Conflicting evidence from life history and immune function. - Glob. Change Biol. 17: 676-687. Go to original source...
  40. Kuussaari M., Rytteri S., Heikkinen R.K., Helio J. & von Bagh P. 2016: Weather explains high annual variation in butterfly dispersal. - Proc. R. Soc. (B) 283: 20160413, 8 pp. Go to original source...
  41. Legrand D., Trochet A., Moulherat S., Calvez O., Stevens V.M., Ducatez S., Clobert J. & Baguette M. 2015: Ranking the ecological causes of dispersal in a butterfly. - Ecography 38: 822-831. Go to original source...
  42. Matthysen E. 2012: Multicausality of dispersal: A review. In Clobert J., Baguette M., Benton T.G. & Bullock J.M. (eds): Dispersal Ecology and Evolution. Oxford University Press, Oxford, pp. 1-18. Go to original source...
  43. Merckx T. & Van Dyck H. 2005: Mate location behaviour of the butterfly Pararge aegeria in woodland and fragmented landscapes. - Anim. Behav. 70: 411-416. Go to original source...
  44. Niitepõld K., Smith A.D., Osborne J.L., Reynolds D.R., Carreck N.L., Martin A.P., Marden J.H., Ovaskainen O. & Hanski I. 2009: Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. - Ecology 90: 2223-2232. Go to original source...
  45. Réale D., Garant D., Humphries M.M., Bergeron P., Careau V. & Montiglio P.O. 2010: Personality and the emergence of the pace-of-life syndrome concept at the population level. - Philos. Trans. R. Soc. (B) 365: 4051-4063. Go to original source...
  46. Reim E., Arnstedt I., Barwisch I., Baumgarten M., Bock S., Eberspach J., Ellerbrok J., Gebremeskel M., Küpper S., Guth L. et al. 2018a: Movement patterns differ between sexes and depend on weather conditions in the butterfly Lycaena tityrus. - J. Insect Behav. 31: 309-320. Go to original source...
  47. Reim E., Baguette M., Günter F. & Fischer K. 2018b: Emigration propensity and flight performance are decoupled in a butterfly. - Ecosphere 9: e02502, 17 pp. Go to original source...
  48. Reim E., Blesinger S., Förster L. & Fischer K. 2018c: Successful despite poor flight performance: range expansion is associated with enhanced exploratory behaviour and fast development. - J. Evol. Biol. 31: 1165-1179. Go to original source...
  49. Reim E., Eichhorn D., Roy J.D., Steinhoff P.O.M. & Fischer K. 2019a: Nutritional stress reduces flight performance and exploratory behavior in a butterfly. - Insect Sci. 26: 897-910. Go to original source...
  50. Reim E., Kahl S., Metschke K. & Fischer K. 2019b: Sexual differences rather than flight performance underlie movement patterns and exploration in a tropical butterfly. - Ecol. Entomol. 44: 648-658. Go to original source...
  51. Ronce O. 2007: How does it feel to be like a rolling stone? Ten questions about dispersal evolution. - Annu. Rev. Ecol. Evol. Syst. 38: 231-253. Go to original source...
  52. Saastamoinen M. & Hanski I. 2008: Genotypic and environmental effects on flight activity and oviposition in the Glanville Fritillary butterfly. - Am. Nat. 171: 701-712. Go to original source...
  53. Saastamoinen M., Brakefield P.M. & Ovaskainen O. 2012: Environmentally induced dispersal-related life-history syndrome in the tropical butterfly, Bicyclus anynana. - J. Evol. Biol. 25: 2264-2275. Go to original source...
  54. Saastamoinen M., Bocedi G., Cote J., Legrand D., Guillaume F., Wheat C.W., Fronhofer E.A., Garcia C., Henry R. & Husby A. et al. 2018: Genetics of dispersal. - Biol. Rev. 93: 574-599. Go to original source...
  55. Settele J., Kudrna O., Harpke A., Kühn I. & Van Swaay C. 2008: Climatic Risk Atlas of European Butterflies. Biodiversity and Ecosystem Risk Assessment 1. Pensoft, Sofia, 712 pp. Go to original source...
  56. Shreeve T. 1986: Egg-laying by the speckled wood butterfly (Pararge aegeria): The role of female behaviour, host plant abundance and temperature. - Ecol. Entomol. 11: 229-236. Go to original source...
  57. Steyn V.M., Mitchell K.A. & Terblanche J.S. 2016: Dispersal propensity, but not flight performance, explains variation in dispersal ability. - Proc. R. Soc. (B) 283: 20160905, 9 pp. Go to original source...
  58. Tammaru T., Kaitaniemi P. & Ruohomaki K. 1996: Realized fecundity in Epirrita autumnata (Lepidoptera: Geometridae): Relation to body size and consequences to population dynamics. - Oikos 77: 407-416. Go to original source...
  59. Therry L., Zawal A., Bonte D. & Stoks R. 2014: What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range? - Biol. J. Linn. Soc. 112: 556-568. Go to original source...
  60. Tolman T. & Lewington R. 1998: Die Tagfalter Europas und Nordwestafrikas. Franckh-Kosmos, Stuttgart, 319 pp.
  61. Trochet A., Legrand D., Larranaga N., Ducatez S., Calvez O., Cote J., Clobert J. & Baguette M. 2013: Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. - J. Anim. Ecol. 82: 946-955. Go to original source...
  62. Van Dyck H. & Baguette M. 2005: Dispersal behaviour in fragmented landscapes: routine or special movements? - Basic Appl. Ecol. 6: 535-545. Go to original source...
  63. Van Dyck H. & Wiklund C. 2002: Seasonal butterfly design: Morphological plasticity among three developmental pathways relative to sex, flight and thermoregulation. - J. Evol. Biol. 15: 216-225. Go to original source...
  64. Wickman P.O. 1992: Sexual selection and butterfly design - a comparative study. - Evolution 46: 1525-1536. Go to original source...
  65. Wickman P.O. 2009: Thermoregulation and habitat use in butterflies. In Settele J., Shreeve T.G., Konvicka M. & Van Dyck H. (eds): Ecology of Butterflies in Europe. Cambridge University Press, Cambridge, pp. 55-61.
  66. Wiklund C. & Fagerström T. 1977: Why do males emerge before females? - Oecologia 31: 153-158. Go to original source...
  67. Zera A.J., Potts J. & Kobus K. 1998: The physiology of life-history trade-offs: Experimental analysis of a hormonally induced life-history trade-off in Gryllus assimilis. - Am. Nat. 152: 7-23. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.