Eur. J. Entomol. 116: 402, 2019 | DOI: 10.14411/eje.2019.041

Screening for stable internal reference genes for quantitative PCR analysis of Wolbachia-host interactions in whitefly Bemisia tabaci (Homoptera: Aleyrodidae)Original article

Xin-Chao LIU, Zheng-Xi LI*
Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China; e-mails: zxli@cau.edu.cn, 1696679923@qq.com

Stable reference genes (RGs) determine the reliability of quantitative polymerase chain reaction (qPCR) analyses and it is recommended that different reference genes are used for different types of DNA and tissues. The present study aimed to screen for stable RGs for the qPCR analysis of the immune responses of the whitefly Bemisia tabaci to the Wolbachia wMel strain from Drosophila melanogaster. A total of eight candidate RGs were evaluated using five different methods, i.e., Coefficient of Variation analysis, GeNorm, NormFinder, BestKeeper and ΔCt. The stability of these RGs was assessed for both genomic DNA (gDNA) and complementary DNA (cDNA). The results indicate that β-actin (Actin) and elongation factor 1 alpha (EF-1α) were the most stable RGs for gDNA, whereas 18S rRNA (18S) and glyceraldehyde phosphate dehydrogenase (GAPDH) were the least stable; in contrast, Actin and GAPDH were the most stable for cDNA, whereas RPL29 and ATPase were the least stable. The effectiveness of the most stable RGs was then validated against the least stable using qPCR analysis of the titre of wMel (gDNA) and the transcriptional responses of the antimicrobial peptide Alo-3-like and the phosphatidylinositol-bisphosphate 3-kinase catalytic subunit delta isoform (cDNA) to wMel transfection. The results support the notion that reliable RGs are essential for a qPCR analysis of samples of both gDNA and cDNA.

Keywords: Homoptera, Aleyrodidae, Bemisia tabaci, reference gene, quantitative PCR, Wolbachia transfection

Received: August 28, 2019; Accepted: November 4, 2019; Published online: November 15, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LIU, X., & LI, Z. (2019). Screening for stable internal reference genes for quantitative PCR analysis of Wolbachia-host interactions in whitefly Bemisia tabaci (Homoptera: Aleyrodidae). EJE116, Article 402. https://doi.org/10.14411/eje.2019.041
Download citation

References

  1. Andersen C.L., Jensen J.L. & Ørntoft T.F. 2004: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. - Cancer Res. 64: 5245-5250. Go to original source...
  2. Artico S., Nardeli S.M., Brilhante O., Grossi-de-Sa M.F. & Alves-Ferreira M. 2010: Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. - BMC Plant Biol. 10: 49, 12 pp. Go to original source...
  3. Arya S.K., Jain G., Upadhyay S.K., Singh H., Dixit S. & Verma P.C. 2017: Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. - Sci. Rep. 7: 13520, 12 pp. Go to original source...
  4. Bansal R., Mamidala P., Mian M.R., Mittapalli O. & Michel A.P. 2012: Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae). - J. Econ. Entomol. 105: 1432-1438. Go to original source...
  5. Boda E., Pini A., Hoxha E., Parolisi R. & Tempia F. 2009: Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. - J. Mol. Neurosci. 37: 238-253. Go to original source...
  6. Bourtzis K. & O'Neill S. 1998: "Wolbachia" Infections and arthropod reproduction. - Bioscience 48: 287-293. Go to original source...
  7. Breeuwer J.A. & Werren J.H. 1993: Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. - Genetics 135: 565-574. Go to original source...
  8. Bustin S.A. 2000: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. - J. Mol. Endocrinol. 25: 169-193. Go to original source...
  9. De Barro P.J., Liu S.S., Boykin L.M. & Dinsdale A.B. 2011: Bemisia tabaci: a statement of species status. - Annu. Rev. Entomol. 56: 1-19. Go to original source...
  10. Derveaux S., Vandesompele J. & Hellemans J. 2010: How to do successful gene expression analysis using real-time PCR. - Methods 50: 227-230. Go to original source...
  11. Freitag D., Koch A., McLean A.L., Kalff R. & Walter J. 2018: Validation of reference genes for expression studies in human meningiomas under different experimental settings. - Mol. Neurobiol. 55: 5787-5797. Go to original source...
  12. Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A. & Werren J.H. 2008: How many species are infected with Wolbachia? A statistical analysis of current data. - FEMS Microbiol. Lett. 281: 215-220. Go to original source...
  13. Hindson C.M., Chevillet J.R., Briggs H.A., Gallichotte E.N., Ruf I.K., Hindson B.J. & Tewari M. 2013: Absolute quantification by droplet digital PCR versus analog real-time PCR. - Nat. Methods 10: 1003. Go to original source...
  14. Horòáková D., Matou¹ková P., Kindl J., Valterová I. & Pichová I. 2010: Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. - Anal. Biochem. 397: 118-120. Go to original source...
  15. Hu H.Y. & Li Z.X. 2015: A novel Wolbachia strain from the rice moth Corcyra cephalonica induces reproductive incompatibility in the whitefly Bemisia tabaci: sequence typing combined with phenotypic evidence. - Environ. Microbiol. Rep. 7: 508-515. Go to original source...
  16. Ibanez F. & Tamborindeguy C. 2016: Selection of reference genes for expression analysis in the potato psyllid, Bactericera cockerelli. - Insect Mol. Biol. 25: 227-238. Go to original source...
  17. Koramutla M.K., Aminedi R. & Bhattacharya R. 2016: Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). - Sci. Rep. 6: 25883, 10 pp. Go to original source...
  18. Lemaitre B. & Hoffmann J. 2007: The host defense of Drosophila melanogaster. - Annu. Rev. Immunol. 25: 697-743. Go to original source...
  19. Li Z.X., Lin H.Z. & Guo X.P. 2007: Prevalence of Wolbachia infection in Bemisia tabaci. - Curr. Microbiol. 54: 467-471. Go to original source...
  20. Li R., Xie W., Wang S., Wu Q., Yang N., Yang X. & Zhou X. 2013: Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). - PLoS ONE 8: e53006, 8 pp. Go to original source...
  21. Livak K.J. & Schmittgen T.D. 2001: Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. - Methods 25: 402-408. Go to original source...
  22. Martins P.K., Mafra V., De Souza W.R., Ribeiro A.P., Vinecky F., Basso M.F. & Molinari H.B.C. 2016: Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis. - Sci. Rep. 6: 28348, 10 pp. Go to original source...
  23. Meng H., Yang Y., Gao Z.H. & Wei J.H. 2019: Selection and validation of reference genes for gene expression studies by RT-PCR in Dalbergia odorifera. - Sci. Rep. 9: 3341, 10 pp. Go to original source...
  24. Navas-Castillo J., Fiallo-Olivé E. & Sánchez-Campos S. 2011: Emerging virus diseases transmitted by whiteflies. - Ann. Rev. Phytopathol. 49: 219-248. Go to original source...
  25. Noda H., Koizumi Y., Zhang Q. & Deng K. 2001: Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. - Insect Biochem. Mol. Biol. 31: 727-737. Go to original source...
  26. Olsvik P.A., Lie K.K., Jordal A.E.O., Nilsen T.O. & Hordvik I. 2005: Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. - BMC Mol. Biol. 6: 21, 9 pp. Go to original source...
  27. Pfaffl M.W., Tichopad A., Prgomet C. & Neuvians T.P. 2004: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. - Biotechnol. Lett. 26: 509-515. Go to original source...
  28. Ponton F., Chapuis M.P., Pernice M., Sword G.A. & Simpson S.J. 2011: Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. - J. Insect Physiol. 57: 840-850. Go to original source...
  29. Scharlaken B., de Graaf D.C., Goossens K., Brunain M., Peelman L.J. & Jacobs F.J. 2008: Reference gene selection for insect expression studies using quantitative real-time PCR: The head of the honeybee, Apis mellifera, after a bacterial challenge. - J. Insect Sci. 8: 33, 10 pp. Go to original source...
  30. Shen Y., Li Y., Ye F., Wang F., Lu W. & Xie X. 2010: Identification of suitable reference genes for measurement of gene expression in human cervical tissues. - Anal. Biochem. 405: 224-229. Go to original source...
  31. Silver N., Best S., Jiang J. & Thein S.L. 2006: Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. - BMC Mol. Biol. 7: 33, 9 pp. Go to original source...
  32. Stouthamer R., Breeuwer J.A. & Hurst G.D. 1999: Wolbachia pipientis: microbial manipulator of arthropod reproduction. - Annu. Rev. Microbiol. 53: 71-102. Go to original source...
  33. Thellin O., Zorzi W., Lakaye B., De Borman B., Coumans B., Hennen G. & Heinen E. 1999: Housekeeping genes as internal standards: use and limits. - J. Biotechnol. 75: 291-295. Go to original source...
  34. Tong Z., Gao Z., Wang F., Zhou J. & Zhang Z. 2009: Selection of reliable reference genes for gene expression studies in peach using real-time PCR. - BMC Mol. Biol. 10: 71, 13 pp. Go to original source...
  35. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A. & Speleman F. 2002: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome Biol. 3: research0034-1, 12 pp. Go to original source...
  36. Van Hiel M.B., Van Wielendaele P., Temmerman L., Van Soest S., Vuerinckx K., Huybrechts R. & Simonet G. 2009: Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. - BMC Mol. Biol. 10: 56, 10 pp. Go to original source...
  37. Werren J.H., Baldo L. & Clark M.E. 2008: Wolbachia: master manipulators of invertebrate biology. - Nat. Rev. Microbiol. 6: 741-751. Go to original source...
  38. Xie L.H., Quan X., Zhang J., Yang Y.Y., Sun R.H., Xia M.C. & Yang L.R. 2019: Selection of reference genes for real-time quantitative PCR normalization in the process of Gaeumannomyces graminis var. tritici infecting wheat. - Plant Pathol. J. 35: 11-18. Go to original source...
  39. Yuan M., Lu Y., Zhu X., Wan H., Shakeel M., Zhan S. & Li J. 2014: Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. - PLoS ONE 9: e86503, 10 pp. Go to original source...
  40. Zhong Y. & Li Z.X. 2013: Influences of tetracycline on the reproduction of the B biotype of Bemisia tabaci (Homoptera: Aleyrodidae). - Appl. Entomol. Zool. 48: 241-246. Go to original source...
  41. Zhong Y. & Li Z.X. 2014: Bidirectional cytoplasmic incompatibility induced by cross-order transfection of Wolbachia: Implications for control of the host population. - Microb. Ecol. 68: 463-471. Go to original source...
  42. Zhou X.F. & Li Z.X. 2016: Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect. - Sci. Rep. 6: 39200, 9 pp. Go to original source...
  43. Zhou W., Rousset F. & O'Neill S. 1998: Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. - Proc. Biol. Sci. 265: 509-515. Go to original source...
  44. Zug R. & Hammerstein P. 2012: Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. - PLoS ONE 7: e38544, 3 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.