Eur. J. Entomol. 116: 85-91, 2019 | DOI: 10.14411/eje.2019.009

The effect of population density of Lymantria dispar (Lepidoptera: Erebidae) on its fitness, physiology and activation of the covert nucleopolyhedrovirusOriginal article

Sergey V. PAVLUSHIN1, Irina A. BELOUSOVA1,2, Ekaterina A. CHERTKOVA1, Natalia A. KRYUKOVA1, Viktor V. GLUPOV1, Viatcheslav V. MARTEMYANOV1,3
1 Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 11 Frunze Str., 630091 Novosibirsk, Russia; e-mails: sergey-pavlushin@mail.ru, belousova_i@yahoo.com, chertkaterina@yandex.ru, dragonfly6@yandex.ru, skif@eco.nsc.ru, martemyanov79@yahoo.com
2 Institute of Biology, Irkutsk State University, 1 Karla Marxa Str., 664003 Irkutsk, Russia
3 Biological Institute, National Research Tomsk State University, 36 Lenina Str., 634050 Tomsk, Russia

After high population densities of insect defoliators there is often a dramatic decrease in their abundance due to various limiting factors. Here, we compared gypsy moth larvae (Lymantria dispar L.) reared singly and in crowded conditions. We compared a number of physiological parameters of these insects and the effect of L. dispar population density on the activation of covert baculovirus infections in the larvae. It was found that the population density of gypsy moth larvae did not affect the mortality due to the activation of the covert virus infection or the total mortality. On the other hand, solitary-reared larvae were heavier, took longer to develop, and showed a four-fold higher concentration of dopamine in their haemolymph than larvae reared in groups. Thus, we demonstrated that an increase in the population density of larvae per se facilitates some changes in fitness and innate immunity traits but is not related to the activation of covert baculovirus infection. We suggest that an increase in population density does not increase the risk of epizootics triggered by the activation of covert baculovirus infection and that researchers should pay more attention to studying density-associated factors, such as starvation.

Keywords: Lepidoptera, Erebidae, Lymantria dispar asiatica, baculovirus, covert infection, population density, insect physiology, fitness

Received: September 5, 2018; Revised: March 13, 2019; Accepted: March 13, 2019; Published online: March 28, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
PAVLUSHIN, S.V., BELOUSOVA, I.A., CHERTKOVA, E.A., KRYUKOVA, N.A., GLUPOV, V.V., & MARTEMYANOV, V.V. (2019). The effect of population density of Lymantria dispar (Lepidoptera: Erebidae) on its fitness, physiology and activation of the covert nucleopolyhedrovirus. EJE116, Article 85-91. https://doi.org/10.14411/eje.2019.009
Download citation

References

  1. Anderson R.M. & May R.M. 1981: The population dynamics of microparasites and their invertebrate hosts. - Phil. Trans. R. Soc. Lond. (B) 291: 451-524. Go to original source...
  2. Applebaum S.W. & Heifetz Y. 1999: Density-dependent physiological phase in insects. - Annu. Rev. Entomol. 44: 317-341. Go to original source...
  3. Bakhvalov S.A., Martemyanov V.V., Bakhvalova V.N. & Morozova O.V. 2012: Detection of the nuclear polyhedrosis virus DNA in samples from eggs and caterpillars at different stages of the gypsy moth Lymantria dispar (L.) population dynamics. - Vopr. Virusol. 57(4): 35-37.
  4. Bradford M.M. 1976: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Analyt. Biochem. 72: 248-254. Go to original source...
  5. Burden J.P., Nixon C.P., Hodgkinson A.E., Possee R.D., Sait S.M., King L.A. & Hails R.S. 2003: Covert infections as a mechanism for long-term persistence of baculoviruses. - Ecol. Lett. 6: 524-531. Go to original source...
  6. Castro M.E.B., Ribeiro Z.M.A., Santos A.C.B., Souza M.L., Machado E.B., Sousa N.J. & Moscardi F. 2009: Identification of a new nucleopolyhedrovirus from naturally-infected Condylorrhiza vestigialis (Guenée) (Lepidoptera: Crambidae) larvae on poplar plantations in South Brazil. - J. Invertebr. Pathol. 102: 149-154. Go to original source...
  7. Clarke T.E. & Clem R.J. 2003: Insect defenses against virus infection: the role of apoptosis. - Int. Rev. Immunol. 22: 401-424. Go to original source...
  8. Clem R.J. 2005: The role of apoptosis in defense against baculovirus infection in insects. - Curr. Top. Microbiol. Immunol. 289: 113-129. Go to original source...
  9. Cory J.S. 2015: Insect virus transmission: different routes to persistence. - Curr. Opin. Insect Sci. 8: 130-135. Go to original source...
  10. Cory J.S. & Myers J.H. 2003: The ecology and evolution of insect baculoviruses. - Annu. Rev. Ecol. Evol. Syst. 34: 239-272. Go to original source...
  11. Davenport A.K. & Evans P.D. 1984: Stress-induced changes in octopamine levels of insect haemolymph. - Insect Biochem. 14: 135-143. Go to original source...
  12. Doane C.C. & McManus M.L. 1981: The Gypsy Moth: Research Toward Integrated Pest Management. For. Serv. Tech. Bull. 1584, U.S.D.A., Washington D.C., 757 pp.
  13. Fuxa J.R., Sun J.Z., Weidner E.H. & LaMotte L.R. 1999: Stressors and rearing diseases of Trichoplusia ni: Evidence of vertical transmission of NPV and CPV. - J. Invertebr. Pathol. 74: 149-155. Go to original source...
  14. Goulson D. & Cory J.S. 1995: Responses of Mamestra brassicae (Lepidoptera, Noctuidae) to crowding - interactions with disease resistance, color phase and growth. - Oecologia 104: 416-423. Go to original source...
  15. Graham R.I., Grzywacz D., Mushobozi W.L. & Wilson K. 2012: Wolbachia in a major african crop pest increases susceptibility to viral disease rather than protects. - Ecol. Lett. 15: 993-1000. Go to original source...
  16. Gruntenko N., Chentsova N.A., Bogomolova E.V., Karpova E.K., Glazko G.V., Faddeeva N.V., Monastirioti M. & Rauschenbach I.Y. 2004: The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses. - Arch. Insect Biochem. Physiol. 55: 55-67. Go to original source...
  17. Gruntenko N.E., Karpova E.K., Alekseev A.A., Chentsova N.A., Saprykina Z.V., Bownes M. & Rauschenbach I.Y. 2005: Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. - J. Insect Physiol. 51: 959-968. Go to original source...
  18. Hillyer J.F. 2016: Insect immunology and hematopoiesis. - Dev. Comp. Immunol. 58: 102-118. Go to original source...
  19. Himuro C., Kumano N., Honma A., Ikegawa Y. & Ohishi T. 2018: Appropriate number of inoculated eggs for mass-rearing the West Indian sweet potato weevil, Euscepes postfasciatus (Coleoptera: Curculionidae). - Appl. Entomol. Zool. 53: 157-164. Go to original source...
  20. Hirashima A. & Eto M. 1993: Effect of stress on levels of octopamine, dopamine and serotonin in the American cockroach (Periplaneta americana L). - Comp. Biochem. Physiol. (C) 105: 279-284. Go to original source...
  21. Honek A. 1993: Intraspecific variation in body size and fecundity in insects - a general relationship. - Oikos 66: 483-492. Go to original source...
  22. Hughes D.S., Possee R.D. & King L.A. 1997: Evidence for the presence of a low-level, persistent baculovirus infection of Mamestra brassicae insects. - J. Gen. Virol. 78: 1801-1805. Go to original source...
  23. Ikeda M., Yamada H., Hamajima R. & Kobayashi M. 2013: Baculovirus genes modulating intracellular innate antiviral immunity of lepidopteran insect cells. - Virology 435: 1-13. Go to original source...
  24. Ilyinykh A.V. & Polenogova O.V. 2012: Demonstration of the remote effect of baculovirus vertical transmission, with gypsy moth Lymantria dispar L. (Lepidoptera, Lymantriidae) as an example. - Zh. Obshch. Biol. 73: 389-395.
  25. Ishikawa H., Ikeda M., Yanagimoto K., Alves C.A.F., Katou Y., Lavina-Caoili B.A. & Kobayashi M. 2003: Induction of apoptosis in an insect cell line, IPLB-Ld652Y, infected with nucleopolyhedroviruses. - J. Gen. Virol. 84: 705-714. Go to original source...
  26. Kasianov N.S., Belousova I.A., Pavlushin S.V., Dubovskiy I.M., Podgwaite J.D., Martemyanov V.V. & Bakhvalov S.A. 2017: The activity of phenoloxidase in haemolymph plasma is not a predictor of Lymantria dispar resistance to its baculovirus. - PLoS ONE 12(8): e0183940, 16 pp. Go to original source...
  27. Kukan B. 1999: Vertical transmission of nucleopolyhedrovirus in insects. - J. Invertebr. Pathol. 74: 103-111. Go to original source...
  28. Kunimi Y. & Yamada E. 1990: Relationship of larval phase and susceptibility of the armyworm, Pseudaletia Separata Walker (Lepidoptera, Noctuidae) to a nuclear polyhedrosis virus and a granulosis virus. - Appl. Entomol. Zool. 25: 289-297. Go to original source...
  29. Lavine M.D. & Strand M.R. 2002: Insect hemocytes and their role in immunity. - Insect Biochem. Mol. Biol. 32: 1295-1309. Go to original source...
  30. Lazarevic J., Peric-Mataruga V., Vlahovic M., Mrdakovic M. & Cvetanovic D. 2004: Effects of rearing density on larval growth and activity of digestive enzymes in Lymantria dispar L. (Lepidoptera : Lymantriidae). - Folia Biol. (Krakow) 52: 105-112.
  31. Lee K.P., Cory J.S., Wilson K., Raubenheimer D. & Simpson S.J. 2006: Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. - Proc. R. Soc. (B) 273: 823-829. Go to original source...
  32. Martemyanov V.V., Dubovskiy I.M., Rantala M.J., Salminen J.P., Belousova I.A., Pavlushin S.V., Bakhvalov S.A. & Glupov V.V. 2012a: The effects of defoliation-induced delayed changes in silver birch foliar chemistry on gypsy moth fitness, immune response, and resistance to baculovirus infection. - J. Chem. Ecol. 38: 295-305. Go to original source...
  33. Martemyanov V.V., Dubovskiy I.M., Belousova I.A., Pavlushin S.V., Domrachev D.V., Rantala M.J., Salminen J.P., Bakhvalov S.A. & Glupov V.V. 2012b: Rapid induced resistance of silver birch affects both innate immunity and performance of gypsy moths: the role of plant chemical defenses. - Arthropod. Plant Interact. 6: 507-518. Go to original source...
  34. Martemyanov V.V., Iudina M.A., Belousova I.A., Bykov R.A. & Ilinsky Yu.Yu. 2014: The screening of Wolbachia infection in gypsy moth (Lymantria dispar) populations in Siberia. - Euroasian Entomol. J. 13: 494-496.
  35. Martemyanov V.V., Pavlushin S.V., Dubovskiy I.M., Yushkova Y.V., Morosov S.V., Chernyak E.I., Efimov V.M., Ruuhola T. & Glupov V.V. 2015: Asynchrony between host plant and insects-defoliator within a tritrophic system: The role of herbivore innate immunity. - PLoS ONE 10(6): e0130988, 19 pp. Go to original source...
  36. Martemyanov V.V., Podgwaite J.D., Belousova I.A., Pavlushin S.V., Slavicek J.M., Baturina O.A., Kabilov M.R. & Ilyinykh A.V. 2017: A comparison of the adaptations of strains of Lymantria dispar multiple nucleopolyhedrovirus to hosts from spatially isolated populations. - J. Invertebr. Pathol. 146: 41-46. Go to original source...
  37. McCallum H., Barlow N. & Hone J. 2001: How should pathogen transmission be modelled? - Trends Ecol. Evol. 16: 295-300. Go to original source...
  38. McNeil J., Cox-Foster D., Gardner M., Slavicek J., Thiem S. & Hoover K. 2010a: Pathogenesis of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar and mechanisms of developmental resistance. - J. Gen. Virol. 91: 1590-1600. Go to original source...
  39. McNeil J., Cox-Foster D., Slavicek J. & Hoover K. 2010b: Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus. - J. Insect Physiol. 56: 1167-1177. Go to original source...
  40. Miller W.E. 2005: Extrinsic effects on fecundity-maternal weight relations in capital-breeding Lepidoptera. - J. Lepid. Soc. 59: 143-160.
  41. Myers J.H. 1988: Can a general hypothesis explain population-cycles of forest Lepidoptera? - Adv. Ecol. Res. 18: 179-242. Go to original source...
  42. Myers J.H. & Cory J.S. 2015: Ecology and evolution of pathogens in natural populations of Lepidoptera. - Evol. Appl. 9: 231-247. Go to original source...
  43. Rauschenbach I.Y., Serova L.I., Timochina I.S., Chentsova N.A. & Schumnaja L.V. 1993: Analysis of differences in dopamine content between 2 lines of Drosophila virilis in response to heat-stress. - J. Insect Physiol. 39: 761-767. Go to original source...
  44. Reilly J.R. & Hajek A.E. 2008: Density-dependent resistance of the gypsy moth Lymantria dispar to it's nucleopolyhedrovirus, and the consequences for population dynamics. - Oecologia 154: 691-701. Go to original source...
  45. Rose D.J.W., Dewhurst C.F. & Page W.W. (eds) 2000: The African Armyworm Handbook. 2nd ed. Natural Resources Institute, Greenwich, 304 pp.
  46. Saejeng A., Tidbury H., Siva-Jothy M.T. & Boots M. 2010: Examining the relationship between hemolymph phenoloxidase and resistance to a DNA virus, Plodia interpunctella granulosis virus (PiGV). - J. Insect Physiol. 56: 1232-1236. Go to original source...
  47. Schowalter T.D. 2006: Insect Ecology: An Ecosystem Approach. 2nd ed. Academic Press, Burlington, MA, pp. 157-159.
  48. Shelby K.S. & Popham H.J.R. 2006: Plasma phenoloxidase of the larval tobacco budworm, Heliothis virescens, is virucidal. - J. Insect Sci. 6(13): 12 pp. Go to original source...
  49. Sorrell I., White A., Pedersen A.B., Hails R.S. & Boots M. 2009: The evolution of covert, silent infection as a parasite strategy. - Proc. R. Soc. (B) 276: 2217-2226. Go to original source...
  50. Tan J., Xu M., Zhang K., Wang X., Chen S., Li T., Xiang Z. & Cui H. 2013: Characterization of hemocytes proliferation in larval silkworm, Bombyx mori. - J. Insect Physiol. 59: 595-603. Go to original source...
  51. Trudeau D., Washburn J.O. & Volkman L.E. 2001: Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. - J. Virol. 75: 996-1003. Go to original source...
  52. Uvarov V.B. 1966: Grasshoppers and Locusts. Vol. 1. Cambridge Univ. Press., Cambridge, UK, 481 pp.
  53. Vilaplana L., Redman E.M., Wilson K. & Cory J.S. 2008: Density-related variation in vertical transmission of a virus in the African armyworm. - Oecologia 155: 237-246. Go to original source...
  54. Vilaplana L., Wilson K., Redman E.M. & Cory J.S. 2010: Pathogen persistence in migratory insects: high levels of vertically-transmitted virus infection in field populations of the African armyworm. - Evol. Ecol. 24: 147-160. Go to original source...
  55. Washburn J.O., Kirkpatrick B.A. & Volkman L.E. 1996: Insect protection against viruses. - Nature 383: 767. Go to original source...
  56. Williams T., Virto C., Murillo R. & Caballero P. 2017: Covert infection of insects by baculoviruses. - Front. Microbiol. 8: 1337, 13 pp. Go to original source...
  57. Wilson K. & Cotter S.C. 2009: Density-dependent prophylaxis in insects. In Ananthakrishnan T.N. & Whitman T.W (eds): Phenotypic Plasticity of Insects:Mmechanisms and Consequences. Science Publ., Enfield, NH, pp. 381-420. Go to original source...
  58. Wilson K. & Reeson A.F. 1998: Density-dependent prophylaxis: Evidence from Lepidoptera-baculovirus interactions? - Ecol. Entomol. 23: 100-101. Go to original source...
  59. Yamada H., Shibuya M., Kobayashi M. & Ikeda M. 2012: Baculovirus Lymantria dispar multiple nucleopolyhedrovirus IAP2 and IAP3 do not suppress apoptosis, but trigger apoptosis of insect cells in a transient expression assay. - Virus Genes 45: 370-379. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.