Eur. J. Entomol. 116: 75-84, 2019 | DOI: 10.14411/eje.2019.008
The role of larval substrate specialization and female oviposition in mediating species diversity of closely-related sepsid flies (Diptera: Sepsidae)Original article
- Department of Evolutionary Biology & Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; e-mails: feliden@web.de, alexandra.wegmann@ieu.uzh.ch, natalia.gourgoulianni@ieu.uzh.ch, j.roy@gmx.ch, wolf.blanckenhorn@ieu.uzh.ch, patrick.rohner@uzh.ch
Coprophagous insect communities play a critical role in the decomposition of vertebrate dung and provide ecosystem functions fundamental to modern agriculture. While the ecology of dung beetles is rather well understood, niche differentiation in coprophagous flies is poorly studied. Sepsid flies (Diptera: Sepsidae) are a vital part of the European community of coprophages, with 6-7 widespread species of Sepsis often found co-occurring in the same pasture. To advance our ecological understanding of the mechanisms that enable species to coexist, we investigated the oviposition preferences and larval performance of 7 common species of Sepsis in the dung of different large domestic and wild mammals. Substrate preferences and subsequent performance of larvae in laboratory experiments did not vary greatly. All species did very well on cow dung, the most common substrate in Central Europe, but also on dung of horse and wild boar. In contrast, flies did not prefer or grow well in dung of red and roe deer, two of the most common wild vertebrates. Thus there were only minor differences among the species tested along the specialist-generalist (dung) gradient, indicating that differences in the choice of oviposition sites by the adults of the different fly species and larval performance do not constitute a major axis of ecological differentiation. Nevertheless, there was a positive correlation between substrate choice and larval performance indicating the preference of gravid females for particular oviposition sites is adaptive. We conclude that sepsids are common in Europe because they are well adapted to the dung of herbivorous livestock rather than wild animals. Nevertheless, specialization on particular types of dung does not define the niche of Sepsis dung flies and hence plays a minor role in mediating their species diversity.
Keywords: Diptera, Sepsidae, coexistence, competition, dung, ecology, food niche, sepsid dung flies, thermal niche
Received: January 2, 2019; Revised: February 14, 2019; Accepted: February 14, 2019; Published online: March 1, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abrams P.A. 1987: Alternative models of character displacement and niche shift. I. Adaptive shifts in resource use when there is competition for nutritionally nonsubstitutable resources. - Evolution 41: 651-661.
Go to original source...
- Angilletta Jr M.J. 2009: Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford, 302 pp.
Go to original source...
- Barron A.B. 2001: The life and death of Hopkins' host-selection principle. - J. Insect Behav. 14: 725-737.
Go to original source...
- Bertone M., Green J., Washburn S., Poore M., Sorenson C. & Watson D.W. 2005: Seasonal activity and species composition of dung beetles inhabiting cattle pastures in North Carolina. - Ann. Entomol. Soc. Am. 98: 309-321.
Go to original source...
- Blanckenhorn W.U., Puniamoorthy N., Scheffczyk A. & Römbke J. 2013: Evaluation of eco-toxicological effects of the parasiticide moxidectin in comparison to ivermectin in 11 species of dung flies. - Ecotoxicol. Environ. Saf. 89: 15-20.
Go to original source...
- Blanckenhorn W.U., Rohner P.T., Bernasconi M.V., Haughaugstetter J. & Buser A. 2016: Is qualitative and quantitative metabarcoding of dung fauna biodiversity feasible? - Environ. Toxicol. Chem. 35: 1970-1977.
Go to original source...
- Conforti S., Dietrich J., Kuhn T., Van Koppenhagen N., Baur J., Rohner P.T., Blanckenhorn W.U. & Schäfer M.A. 2018: Comparative effects of the parasiticide ivermectin on survival and reproduction of adult sepsid flies. - Ecotoxicol. Environ. Saf. 163: 215-222.
Go to original source...
- Dmitriew C. & Blanckenhorn W.U. 2012: The role of sexual selection and conflict in mediating among-population variation in mating strategies and sexually dimorphic traits in the black scavenger fly Sepsis punctum. - Plos One 7(12): e49511, 7 pp.
Go to original source...
- Dormont L., Jay-Robert P., Bessiere J.M., Rapior S. & Lumaret J.-P. 2010: Innate olfactory preferences in dung beetles. - J. Exp. Biol. 213: 3177-3186.
Go to original source...
- Farrell B. & Mitter C. 1990: Phylogenesis of insect/plant interactions: have phyllobrotica leaf beetles (Chrysomelidae) and the lamiales diversified in parallel? - Evolution 44: 1389-1403.
Go to original source...
- Fatchurochim S., Geden C.J. & Axtell R.C. 1989: Filth fly (Diptera) oviposition and larval development in poultry manure of various moisture levels. - J. Entomol. Sci. 24: 224-231.
Go to original source...
- Ferrar P. 1987: A Guide to the Breeding Habits and Immature Stages of Diptera, Cyclorrhapha. Brill, Leiden, 907 pp.
Go to original source...
- Floatke K.D., Düring R.-A., Hanafi J., Jud P., Lahr J., Lumaret J.-P., Scheffczyk A., Tixier T., Wohde M., Römbke J., Sautot L. & Blanckenhorn W.U. 2016: Validation of a standard test method in four countries to assess the toxicity of residues in dung of cattle treated with veterinary medical products. - Environ. Toxicol. Chem. 35: 1934-1946.
Go to original source...
- Forister M.L. 2004: Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. - Ecol. Entomol. 29: 264-272.
Go to original source...
- Forister M.L., Nice C.C., Fordyce J.A. & Gompert Z. 2009: Host range evolution is not driven by the optimization of larval performance: the case of Lycaeides melissa (Lepidoptera: Lycaenidae) and the colonization of alfalfa. - Oecologia 160: 551-561.
Go to original source...
- Fox J.W. 2002: Testing a simple rule for dominance in resource competition. - Am. Nat. 159: 305-319.
Go to original source...
- Fox C.W. & Czesak M.E. 2000: Evolutionary ecology of progeny size in arthropods. - Annu. Rev. Entomol. 45: 341-369.
Go to original source...
- Frank K., Brückner A., Hilpert A., Heethoff M. & Bluthgen N. 2017: Nutrient quality of vertebrate dung as a diet for dung beetles. - Sci. Reports 7: 12141, 12 pp.
Go to original source...
- Germain R.M., Weir J.T. & Gilbert B. 2016: Species coexistence: macroevolutionary relationships and the contingency of historical interactions. - Proc. R. Soc. (B) 283: 20160047, 7 pp.
Go to original source...
- Giesen A., Blanckenhorn W.U. & Schäfer MA. 2017: Behavioural mechanisms of reproductive isolation between two hybridizing dung fly species. - Anim. Behav. 132: 155-166.
Go to original source...
- Gómez Jiménez M.I., Sarmiento C.E., Díaz M.F., Chautá A., Peraza A., Ramírez A. & Poveda K. 2014: Oviposition, larval preference, and larval performance in two polyphagous species: does the larva know best? - Entomol. Exp. Appl. 153: 24-33.
Go to original source...
- Haenni J.-P. 1998: Sepsidae. In Merz B., Baechli G., Haenni J.-P. & Gonseth Y. (eds): Diptera - Checklist. Fauna Helvetica. Vol. 1. Schweizerische Entomologische Gesellschaft, Neuchâtel, pp. 249-250.
- Hammer O. 1941: Biological and ecological investigations on flies associated with pasturing cattle and their excrements. - Vidensk. Medd. Dansk Naturh. Foren. 105: 140-393.
- Hanski I. & Cambefort Y. 1991: Dung Beetle Ecology. Princeton University Press, Princeton, NJ, xiii + 481 pp.
Go to original source...
- Holt R.D. 2009: Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. - PNAS 106: 19659-19665.
Go to original source...
- Jay-Robert P., Lobo J.M. & Lumaret J.-P. 1997: Altitudinal turnover and species richness variation in European montane dung beetle assemblages. - Arctic Alpine Res. 29: 196-205.
Go to original source...
- Jochmann R. & Blanckenhorn W.U. 2016: Non-target effects of Ivermectin on trophic groups of the cow dung insect community replicated across an agricultural landscape. - Basic Appl. Ecol. 17: 291-299.
Go to original source...
- Jochmann R., Lipkow E. & Blanckenhorn W.U. 2016: A field test of the effect of spiked ivermectin concentrations on the biodiversity of coprophagous dung insects in Switzerland. - Environ. Toxicol. Chem. 35: 1947-1952.
Go to original source...
- Kadiri N., Lobo J.M. & Lumaret J.-P. 1997: Conséquences de l'interaction entre préférences pour l'habitat et quantité de ressources trophiques sur les communautés d'insectes coprophages (Coleoptera: Scarabaeoidea). - Acta Oecol. 18: 107-119.
Go to original source...
- Konig M.A.E., Wiklund C. & Ehrlen J. 2016: Butterfly oviposition preference is not related to larval performance on a polyploid herb. - Ecol. Evol. 6: 2781-2789.
Go to original source...
- Lee C. & Wall R. 2008: Distribution and abundance of insects colonizing cattle dung in South West England. - J. Nat. Hist. 40: 1167-1177.
Go to original source...
- Levine J.M. & HilleRisLambers J. 2009: The importance of niches for the maintenance of species diversity. - Nature 461: 254-257.
Go to original source...
- Loboda S., Savage J., Buddle C.M., Schmidt N.M. & Høye T.T. 2018: Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. - Ecography 41: 265-277.
Go to original source...
- Lumaret J.-P. 1995: Desiccation rate of excrements: a selective pressure on dung beetles. In Roy J., Aronson J. & Di Castri F. (eds): Time Scales of Biological Responses to Water Constraints. The Case of Mediterranean Biota. SPB Academic Publishing, Amsterdam, pp. 105-118.
- Lumaret J.-P., Kadiri N. & Bertrand M. 1992: Changes in resources: Consequences for the dynamics of dung beetle communities. - J. Appl. Ecol. 29: 349-356.
Go to original source...
- Lumaret J.-P., Galante E., Lumbreras C., Mena J., Bertrand M., Bernal J.L., Cooper J.F., Kadiri N. & Crowe D. 1993: Field effects of Ivermectin residues on dung beetles. - J. Appl. Ecol. 30: 428-436.
Go to original source...
- Oehri J., Schmid B., Schaepman-Strub G. & Niklaus P.A. 2017: Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. - PNAS 114: 10160-10165.
Go to original source...
- Ozerov A.L. 2005: World Catalogue of the Family Sepsidae (Insecta: Diptera). Zoologicheskie Issledovanii 8, Museum of Zoology, Moscow, 74 pp.
- Pacala S.W. & Roughgarden J. 1985: Population experiments with the Anolis lizards of St-Maarten and St-Eustatius. - Ecology 66: 129-141.
Go to original source...
- Papp L. 1992: Fly communities in pasture dung - Some results and problems (Diptera). - Acta Zool. Hungar. 38: 75-88.
- Phillimore A.B., Stalhandske S., Smithers R.J. & Bernard R. 2012: Dissecting the contribution of plasticity and local adaptation to the phenology of a butterfly and its host plants. - Am. Nat. 180: 655-670.
Go to original source...
- Pont A.C. & Meier R. 2002: The Sepsidae (Diptera) of Europe. Fauna Entomologica Scandinavica 37. Brill, Leiden, Boston, Köln, 219 pp.
Go to original source...
- Püchel F. 1993: Untersuchungen über die Besiedlung von Kuhdung durch Sepsiden (Diptera). Thesis, University of Bielefeld, iv + 77 pp.
- Puniamoorthy N., Blanckenhorn W.U. & Schäfer M.A. 2012: Differential investment in pre- versus post-copulatory sexual selection reinforces a cross-continental reversal of sexual size dimorphism in Sepsis punctum (Diptera: Sepsidae). - J. Evol. Biol. 25: 2253-2263.
Go to original source...
- Puniamoorthy N., Schäfer M.A., Römbke J., Meier R. & Blanckenhorn W.U. 2014: Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies. - Evol. Appl. 7: 548-554.
Go to original source...
- Rohner P.T. & Bächli G. 2016: Faunistic data of Sepsidae (Diptera) from Switzerland and additional countries including the first Swiss record of Meroplius fukuharai (Iwasa, 1984). - Mitt. Schweiz. Entomol. Ges. 89: 237-260.
- Rohner P.T. & Blanckenhorn W.U. 2018: A comparative study of the role of sex-specific condition dependence in the evolution of sexually dimorphic traits. - Am. Nat. 192: E202-E215.
Go to original source...
- Rohner P.T., Puniamoorthy N., Ang Y., Lei Z., Blanckenhorn W.U. & Meier R. 2014: Genetic data confirm the species status of Sepsis nigripes, Meigen 1826 (Diptera: Sepsidae) and adds one species to the Alpine fauna while questioning the synonymy of Sepsis helvetica, Munari, 1985. - Invert. Syst. 28: 555-563.
Go to original source...
- Rohner P.T., Bächli G., Pollini Paltrinieri L., Duelli P., Obrist M.K., Jochmann R. & Blanckenhorn W.U. 2015: Distribution, diversity gradients and Rapoport's elevational rule in the black scavenger flies of the Swiss Alps (Diptera: Sepsidae). - Insect Conserv. 8: 367-376.
Go to original source...
- Rohner P.T., Blanckenhorn W.U. & Puniamoorthy N. 2016: Sexual selection on male size drives the evolution of male-biased sexual size dimorphism via the prolongation of male development. - Evolution 70: 1189-1199.
Go to original source...
- Rohner P.T., Roy J., Haenni J.-P., Giesen A., Busso J.P., Schäfer M.A., Püchel-Wieling F. & Blanckenhorn W.U. 2019: Temporal niche partitioning of Swiss black scavenger flies in relation to season and substrate age (Diptera: Sepsidae). - Alpine Entomol. 3 [in press].
Go to original source...
- Ronquist F. & Liljeblad J. 2001: Evolution of the gall wasp-host plant association. - Evolution 55: 2503-2522.
Go to original source...
- Schluter D., Price T.D. & Grant P.R. 1985: Ecological character displacement in Darwin's Finches. - Science 227: 1056-1059.
Go to original source...
- Skidmore P. 1991: Insects of the British Cow-dung Community, Vol. 21. Aids to Identification in Difficult Groups of Animals and Plants. Field Studies Council, Shrewsbury, 160 pp
- Sladecek F.X.J., Sulakova H. & Konvicka M. 2017: Temporal segregations in the surface community of an ephemeral habitat: Time separates the potential competitors of coprophilous Diptera. - Entomol. Sci. 20: 111-121.
Go to original source...
- Ståhlhandske S., Gotthard K. & Leimar O. 2017: Winter chilling speeds spring development of temperate butterflies. - J. Anim. Ecol. 86: 718-729.
Go to original source...
- Van der Goot V.S. 1987: Meroplius minutus (Wiedemann) (Dipt., Sepsidae) extinct in the low countries. - Entomol. Mon. Mag. 123: 82.
- Violle C., Nemergut D.R., Pu Z.C. & Jiang L. 2011: Phylogenetic limiting similarity and competitive exclusion. - Ecol. Lett. 14: 782-787.
Go to original source...
- Wiklund C. 1975: The evolutionary relationship between adult oviposition preferences and larval host plant range in Papilio machaon L. - Oecologia 18: 185-197.
Go to original source...
- Zuo X.H., Guo X.G., Zhan Y.Z., Wu D., Yang Z.H., Dong W.G., Huang L.Q., Ren T.G., Jing Y.G. & Wang Q.H. 2011: Host selection and niche differentiation in sucking lice (Insecta: Anoplura) among small mammals in southwestern China. - Parasitol. Res. 108: 1243-1251.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.