Eur. J. Entomol. 104 (3): 459-470, 2007 | DOI: 10.14411/eje.2007.066

Sexual dimorphism and light/dark adaptation in the compound eyes of male and female Acentria ephemerella (Lepidoptera: Pyraloidea: Crambidae)

Ting Fan (Stanley) LAU1, Elisabeth Maria GROSS2, Victor Benno MEYER-ROCHOW1,3
1 Faculty of Engineering and Sciences, Jacobs University Bremen, P.O.Box 750561, D-28725 Bremen, Germany
2 Limnological Institute, University of Konstanz, P.O. Box M659, D-78457 Konstanz, Germany
3 Department of Biology (Zoological Museum), University of Oulu, P.O.Box 3000, SF-90014 Oulu, Finland; e-mail: vmr@cc.oulu.fi and b.meyer-rochow@iu-bremen.de

In the highly sexual-dimorphic nocturnal moth, Acentria ephemerella Denis & Schiffermüller 1775, the aquatic and wingless female possesses a refracting superposition eye, whose gross structural organization agrees with that of the fully-winged male. The possession of an extensive corneal nipple array, a wide clear-zone in combination with a voluminous rhabdom and a reflecting tracheal sheath are proof that the eyes of both sexes are adapted to function in a dimly lit environment. However, the ommatidium of the male eye has statistically significantly longer dioptric structures (i.e., crystalline cones) and light-perceiving elements (i.e., rhabdoms), as well as a much wider clear-zone than the female. Photomechanical changes upon light/dark adaptation in both male and female eyes result in screening pigment translocations that reduce or dilate ommatidial apertures, but because of the larger number of smaller facets of the male eye in combination with the structural differences of dioptric apparatus and retina (see above) the male eye would enjoy superior absolute visual sensitivity under dim conditions and a greater resolving power and ability to detect movement during the day. The arrangement of the microvilli in the rhabdom of both genders suggests that their eyes are polarization-sensitive, an ability they would share with many aquatic insects that have to recognize water surfaces. Although sexual recognition in A. ephemerella is thought to chiefly rely on pheromones, vision must still be important for both sexes, even if the females are wingless and never leave their watery habitat. Females swim actively under water and like their male counterparts, which fly above the surface of the water, they would have to see and avoid obstacles as well as potential predators. This, together with a small incidence of winged females, we believe, could be the reason why the eyes of female A. ephemerella are less regressed than those of other sexually dimorphic moths, like for instance Orgyia antiqua. Another, but difficult to test, possibility is that male and female A. ephemerella have diverged in their behaviour and habitat preferences less long ago than other sexually dimorphic moths.

Keywords: Pyraloidea, Crambidae, compound eye, photoreception, vision, retina, sexual dimorphism, polarization sensitivity, dark/light adaptation, photoreceptor evolution

Received: November 3, 2006; Revised: January 17, 2007; Accepted: January 17, 2007; Published: July 25, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LAU, T.F.(., GROSS, E.M., & MEYER-ROCHOW, V.B. (2007). Sexual dimorphism and light/dark adaptation in the compound eyes of male and female Acentria ephemerella (Lepidoptera: Pyraloidea: Crambidae). EJE104(3), 459-470. doi: 10.14411/eje.2007.066
Download citation

References

  1. AUTRUM H. 1981: Light and dark adaptation in invertebrate. In Autrum H. (ed.): Handbook of Sensory Physiology. Vol. VII/6C. Springer, Berlin, pp. 1-91 Go to original source...
  2. BATRA S.W.T. 1977: Bionomics of the aquatic moth, Acentria niveus (Oliver), a potential biological control agent for Eurasian watermilfoil and Hydrilla. N. Y. Entomol. Soc. 85: 59-139
  3. BERG K. 1942: Contribution to the biology of the aquatic moth Acentropus niveus (Oliv.). Vidensk. Medd. Dansk. Naturh. Foren. 105: 59-139
  4. BERNATH B., SZEDENICS G., WILDERMUTH H. & HORVATH G. 2002: How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biol. 47: 1707-1719 Go to original source...
  5. BERNHARD C.G. & OTTOSON D. 1960a: Comparative studies on dark adaptation in the compound eyes of nocturnal and diurnal Lepidoptera. J. Gen. Physiol. 44: 195-203 Go to original source...
  6. BERNHARD C.G. & OTTOSON D. 1960b: Studies on the relation between the pigment migration and the sensitivity changes during dark adaptation in diurnal and nocturnal Lepidoptera. J. Gen. Physiol. 44: 205-215 Go to original source...
  7. BERNHARD C.G., HOGLUND G. & OTTOSON D. 1963: On the relation between pigment position and light sensitivity of the compound eye in different noctural insects. J. Insect Physiol. 9: 573-586 Go to original source...
  8. BERNHARD C.G., GEMNE G. & SALLSTROM J. 1970: Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. Vergl. Physiol. 67: 1-25 Go to original source...
  9. BUCKINGHAM G.R. & ROSS B.M. 1981: Notes on the biology and host specificity of Acentria nivea (= Acentropus niveus). J. Aquat. Plant Manag. 19: 32-36
  10. CAVENEY S. & MCINTYRE P. 1981: Design of graded-index lenses in the superposition eyes of scarab beetles. Phil. Trans. Soc. Lond. (B) 294: 589-632 Go to original source...
  11. DENIS J.N. & SCHIFFERMULLER C.M. 1775: Ankuendigung eines systematischen Werkes von den Schmetterlingen der Wienergegend. Bernardi, Wien, 322 pp
  12. EGUCHI E. 1978: Comparative fine structure of Lepidopteran compound eyes, especially Skippers (Hesperioidea). Zool. Mag. 87: 32-43
  13. EGUCHI E., WATANABE K., HARIYAMA T. & YAMAMOTO K. 1982: A comparison of electrophysiologically determined spectral responses in 35 species of Lepidoptera. J. Insect Physiol. 28: 675-682 Go to original source...
  14. GOKAN N. & MEYER-ROCHOW V.B. 2000: Morphological comparisons of compound eyes in Scarabaeoidea (Coleoptera) related to the beetles' daily activity maxima and phylogenetic positions. J. Agricult. Sci. 45: 15-61
  15. GROSS E.M., JOHNSON R.L. & HAIRSTON JR.N.G. 2001: Experimental evidence for changes in submersed macrophyte species composition caused by the herbivores Acentria ephemerella (Lepidoptera). Oecologia 127: 105-114 Go to original source...
  16. GROSS E.M., FELDBAUM C. & CHOI C. 2002: High abundance of herbivorous Lepidoptera larvae (Acentria ephemerella Denis & Schiffermueller) on submersed macrophytes in Lake Constance (Germany). Arch. Hydrobiol. 155: 1-21 Go to original source...
  17. HACKMAN W. 1966: On wing reduction and loss of wings in Lepidoptera. Notul. Entomol. 46: 1-16
  18. HEPPNER J.B. 1991: Brachyptery and aptery in Lepidoptera. Trop. Lepid. 2: 11-40
  19. HORNSTEIN E.P., O'CARROLL D.C., ANDERSON J.C. & LAUGHLIN S.B. 2000: Sexual dimorphism matches photoreceptor performance to behavioural requirements. Proc. R. Soc. Lond. (B) 267: 2111-2117 Go to original source...
  20. HORRIDGE G.A. & GIDDINGS C. 1971: The retina of Ephestia (Lepidoptera). Proc. R. Soc. Lond. (B) 179: 87-95 Go to original source...
  21. HORRIDGE G.A. & HENDERSON I. 1976: The ommatidium of the lacewing Chrysopa (Neuroptera). Proc. R. Soc. Lond. (B) 192: 259-271 Go to original source...
  22. HORVATH G. 1995: Reflection-polarization patterns at flat water surfaces and their relevance for insect polarization vision. J. Theor. Biol. 175: 27-37 Go to original source...
  23. JANDER U. & JANDER R. 2002: Allometry and resolution of bee eyes (Apoidea). Arthrop. Struct. Dev. 30: 179-193 Go to original source...
  24. JOHNSON R.L., GROSS E.M. & HAIRSTON JR.N.G. 1998: Decline of the invasive submersed macrophyte Myriophyllum spicatum (Haloragaceae) associated with herbivory by larvae of Acentria ephemerella. Aquat. Ecol. 31: 273-282 Go to original source...
  25. KRISKA G., HORVATH G. & ANDRIKOVICS S. 1998: Why do mayflies lay their eggs en masse on the dry asphalt roads? Water imitating polarized light reflected from asphalt attracts Ephemeroptera. J. Exp. Biol. 201: 2273-2286 Go to original source...
  26. KESKINEN E. & MEYER-ROCHOW V.B. 2004: Post-embryonic photoreceptor development and dark/light adaptation in the spittle bug Philaenus spumarius (L.) (Homoptera: Cercopidae). Arthrop. Struct. Dev. 33: 405-417 Go to original source...
  27. LABHART T. & MEYER E.P. 1999: Detectors for polarized skylight in insects: A survey of ommitidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 47: 368-379 Go to original source...
  28. LABHART T., MEYER E.P. & SCHENKER L. 1992: Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha, (Coleoptera: Scarabaeidae). Cell Tissue Res. 268: 419-429 Go to original source...
  29. LAND M.F. 1981: Optics and vision in invertebrates. In Autrum H. (ed.): Handbook of Sensory Physiology. Vol. VII/6B. Springer-Verlag, Berlin, Heidelberg, NewYork, pp. 471-592 Go to original source...
  30. LAND M.F. & NILSSON D.E. 2002: Animal Eyes. Oxford University Press, Oxford, 221 pp
  31. LAU T.F.S. & MEYER-ROCHOW V.B. 2006: Sexual dimorphism in the compound eye of Rhagophthalmus ohbai (Coleoptera: Rhagophthalmidae). J. Asia-Pacific Entomol. 9: 1-12 Go to original source...
  32. LAU T.F.S. & MEYER-ROCHOW V.B. 2007: Sexual dimorphism and light/dark adaptation in the compound eye of Orygia antiqua (Lepidoptera: Lymantriidae). Eur. J. Entomol. 104: 247-258 Go to original source...
  33. MCINTYRE P. & CAVENEY S. 1998: Superposition optics and the time of flight in onitine dung beetles. J. Comp. Physiol. (A) 183: 45-60 Go to original source...
  34. MERRY J.W., MOREHOUSE N.I., YTURRALDE K. & RUTOWSKI R.L. 2006: The eye of a patrolling butterfly: Visual field and eye structure in the orange sulphur, Colias eurytheme (Lepidoptera: Pieridae). J. Insect Physiol. 52: 240-248 Go to original source...
  35. MEYER-ROCHOW V.B. 1974: Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J. Insect Physiol. 20: 573-589 Go to original source...
  36. MEYER-ROCHOW V.B. & HORRIDGE G.A. 1975: The eye of Anoplognathus (Coleoptera: Scarabaeidae). Proc. R. Soc. Lond. (B) 188: 1-30 Go to original source...
  37. MEYER-ROCHOW V.B. & GAL J. 2004: Dimensional limits for arthropod eyes with superposition optics. Vision Res. 44: 2213-2223 Go to original source...
  38. MILLER W.H. 1979: Ocular optical filtering. In Autrum H. (ed.): Handbook of Sensory Physiology. Vol. VII/6A. Springer, Berlin, pp. 69-143 Go to original source...
  39. MOSER J.C., REEVE J.D., BENTO J.M.S., LUCIA T.M.C., CAMERON R.S. & HECK N.M. 2004: Eye size and behaviour of day- and night-flying leafcutting ant alates. J. Zool. Lond. 264: 69-75 Go to original source...
  40. NILSSON D.E. 1989: Optics and evolution of the compound eye. In Stavenga D.G. & Hardie R.C. (eds): Facets of Vision. Springer-Verlag, Berlin, Heidelberg, pp. 30-73 Go to original source...
  41. RODRIGUEZ-SOSA L. & ARECHIGA H. 1982: Range of modulation of light sensitivity by accessory pigments in the crayfish compound eye. Vision Res. 22: 1515-1524 Go to original source...
  42. ROFF D.A. & FAIRBAIRN D.J. 1991: Wing dimorphisms and the evolution of migratory polymorphism among Insecta. Am. Zool. 31: 243-251 Go to original source...
  43. RUTOWSKI R.L. 2000: Variation of eye size in butterflies: interand intraspecific patterns. J. Zool. Lond. 252: 187-195 Go to original source...
  44. SCHLECHT P., HAMDORF K. & LANGER H. 1978: The arrangement of colour receptors in a fused rhabdom of an insect: A microspectrophotometric study on the moth Deilephila. J. Comp. Physiol. 123: 239-243 Go to original source...
  45. SCHWIND R. 1991: Polarization vision in water insects and insects living on a moist substrate. J. Comp. Physiol. (A) 169: 531-540 Go to original source...
  46. SCHWIND R. 1993: Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaften 80: 82-83 Go to original source...
  47. SPEIDEL W. 2003: Aquatische Schmetterlinge: Phylogenie und Lebensweise einer Microlepidopterengruppe (Lepidoptera: Crambidae). Verh. Westd. Entomol.-Tag., LGbbecke-Mus. Duesseldf. 2001: 81-87
  48. SRINIVASAN M.V., ZHANG S.W., LEHRER M. & COLLETT T.S. 1996: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199: 237-244 Go to original source...
  49. STAVENGA D.G., FOLETTI S., PALASANTZAS G. & ARIKAWA K. 2005: Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. (B) 273: 661-667 Go to original source...
  50. THAYER M.K. 1992: Discovery of sexual dimorphism in Staphylinidae (Coleoptera): Omalium flavidum, and a discussion of wing dimorphism in insects. J. N. Y. Entomol. Soc. 100: 540-573
  51. THIELE H. 1971: Uber die Facettenaugen von land- und wasserbewohnenden Crustaceen. Z. Morphol. 69: 9-22 Go to original source...
  52. VILORIA A.L., PYRCZ T.W., WOJTUSIAK J., FERRER-PARIS J.R., BECCALONI G.W., SATTLER K. & LEES D.C. 2003: A brachypterous butterfly? Proc. R. Soc. Lond. (B) (Suppl.) 270: S21-S24 Go to original source...
  53. WARRANT E.J. & MCINTYRE P. 1990: Screening pigments, aperture and sensitivity in the dung beetles superposition eye. J. Comp. Physiol. 167: 805-815 Go to original source...
  54. WARRANT E.J. & MCINTYRE P. 1996: The visual ecology of pupillary action in superposition eyes. J. Comp. Physiol (A) 178: 75-90 Go to original source...
  55. YAGI N. & KOYAMA N. 1963: The Compound Eye of Lepidoptera: Approach from Organic Evolution. Shinkyo Press, Tokyo, 318 pp
  56. ZERA A.J. & DENNO R.F. 1997: Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42: 207-230 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.