Eur. J. Entomol. 101 (3): 439-444, 2004 | DOI: 10.14411/eje.2004.063
Physiological traits of invertebrates entering cryptobiosis in a post-embryonic stage
- 1 National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
- 2 Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland
- 3 International Institute of Tropical Agriculture (Kano Station), Sabo Bakin Zuwo Road, P.M.B. 3112, Kano, Nigeria
- 4 Present address: Tokyo University of Agriculture, Tokyo 156-8502, Japan
Cryptobiosis is the state when the metabolic activity of an organism is hardly measurable or is reversibly at a standstill. Many groups of invertebrates have this ability, and can be divided into two types according to the developmental stage in which it occurs; embryonic (eggs) or post-embryonic stages (larvae and adults). The latter must be able to reversibly regulate the physiology and biochemistry of development and cryptobiosis. There are several reviews on cryptobiosis and its regulation, but none on the physiological mechanism of cryptobiosis in chironomids. The present paper reviews the physiological traits of invertebrates entering cryptobiosis in a post-embryonic stage. These unique phenomena, which occur in a post-embryonic stage of three groups of cryptobiotic invertebrates (insects, tardigrades and nematodes) are discussed with particular reference to; 1) the behavioural and physiological adaptations of cryptobiotic invertebrates, 2) role of trehalose in cryptobiosis and 3) regulation of cryptobiosis.
Keywords: Cryptobiosis, anhydrobiosis, invertebrate, post-embryonic stage, trehalose, compatible solute, recovery
Received: October 15, 2003; Revised: March 15, 2004; Accepted: June 8, 2004; Published: September 20, 2004 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Adams S. 1985: Cryptobiosis in Chironomidae (Diptera) - two decades on. Antenna 8: 58-61
- Browne J., Tunnacliffe A. & Burnell A. 2002: Plant desiccation gene found in a nematode. Nature 416: 38. Burke M.J. 1986: The glassy state and survival of anhydrous biological systems. In Leopold A.C. (ed.): Membranes, Metabolism, and Dry Organisms. Comstock Publishing Associate, Cornell University Press, Ithaca and London, pp. 358-363
Go to original source...
- Clegg J.S. 2001: Cryptobiosis - a peculiar state of biological organization. Comp. Biochem. Physiol. (B) 128: 613-624
Go to original source...
- Crowe J.H. 1972: Evaporative water loss by tardigrades under controlled relative humidities. Biol. Bull. 142: 407-416
Go to original source...
- Crowe J.H. & Cooper A.F. 1971: Cryptobiosis. Sci. Am. 225: 30-36
Go to original source...
- Crowe J.H. & Madin K.A.C. 1975: Anhydrobiosis in nematodes: evaporative water loss and survival. J. Exp. Zool. 193: 323-334
Go to original source...
- Crowe J.H., Crowe L.M., Carpenter J.F. & Wistrom C.A. 1987: Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242: 1-10
Go to original source...
- Crowe J.H., Hoekstra F.A. & Crowe L.M. 1992: Anhydrobiosis. Annu. Rev. Physiol. 54: 579-599
Go to original source...
- Crowe J.H., Carpenter J.F. & Crowe L.M. 1998: The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60: 73-103
Go to original source...
- Denlinger D.L. 1985: Hormonal control of diapause. In Kerkut G.A. & Gilbert L. (eds): Comprehensive Insect Physiology, Biochemistry and Pharmacology. Vol. 8. Endocrinology II. Pergamon Press, Oxford, pp. 353-412
Go to original source...
- Ellenby C. 1969: Dormancy and survival in nematodes. Soc. Exp. Biol. Symp. 23: 83-97
- Green J.L. & Angell C.A. 1989: Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93: 2880-2882
Go to original source...
- Guo N., Puhlev I., Brown D.R., Mansbridge J. & Levine F. 2000: Trehalose expression confers desiccation tolerance on human cells. Nature Biotech. 18: 168-171
Go to original source...
- Higa L.M. & Womersley C. 1993: New insights into the anhydrobiotic phenomenon - effects of trehalose content and differential rates of evaporative water loss on the survival of Aphelenchus avenae. J. Exp. Zool. 267: 120-129
Go to original source...
- Hinton H.E. 1951: A new chironomid from Africa, the larva of which can be dehydrated without injury. Proc. Zool. Soc. Lond. 121: 371-380
Go to original source...
- Hinton H.E. 1960a: Cryptobiosis in the larva of Polypedilum vanderplanki Hint. (Chironomidae). J. Insect Physiol. 5: 286-300
Go to original source...
- Hinton H.E. 1960b: A fly larva that tolerates dehydration and temperatures of -270° to +102°C. Nature 188: 336-337
Go to original source...
- Hinton H.E. 1968: Reversible suspension of metabolism and the origin of life. Proc. R. Soc. (B) 171: 43-57
Go to original source...
- Hochachka D.W. & Guppy M. 1987: Metabolic Arrest and the Control of Biological Time. Harvard University Press, Cambridge, Massachusetts and London, 227 pp
Go to original source...
- Ingram J. & Bartels D. 1996: The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403
Go to original source...
- Keilin D. 1959: The problem of anabiosis or latent life history and current concept. Proc. R. Soc. London (B) 150: 149-191
Go to original source...
- Lapinski J. & Tunnacliffe A. 2003: Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett. 553: 387-390
Go to original source...
- Madin K.C. & Crowe J.H. 1975: Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J. Exp. Zool. 193: 335-342
Go to original source...
- Maeda T. 1999: Osmotic response of the yeast Saccharomyces cerevisiae. In Shinozaki K., Yamamoto M., Okamoto H. & Iwabuchi M. (eds): Molecular Mechanisms of Response and Adaptation to Environmental Stimuli. (Special issue of Protein, Nucleic acid, Enzyme). Kyoritsu Publishing, Tokyo, pp. 2206-2213 (in Japanese)
- Maeda T., Wurgler-Murphy S.M. & Saito H. 1994: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242-245
Go to original source...
- Pickup J. & Rothery P. 1991: Water loss and anhydrobiotic survival in nematodes from Antarctic fell fields. Oikos 61: 379-388
Go to original source...
- Pilato G. 1979: Correlations between cryptobiosis and other biological characteristics in some soil animals. Bull. Zool. 46: 319-332
Go to original source...
- Posas F. & Saito H. 1997: Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276: 1702-1705
Go to original source...
- Rahm G. 1937: A new ordo of tardigrades from the hot springs of Japan (Furu-yu section, Unzen). Ann. Zool. Jpn. 16: 345-352
- Seki K. & Toyoshima M. 1998: Preserving tardigrades under pressure. Nature 395: 853-854
Go to original source...
- Somme L. 1995: Invertebrates in Hot and Cold Arid Environments. Springer-Verlag, Germany, 280 pp
Go to original source...
- Somme L. 1996: Anhydrobiosis and cold tolerance in tardigrades. Eur. J. Entomol. 93: 349-357
- Spallanzani L. 1769: Nouvelles Recherches sur les Decouvertes Microscopique et sur la Generation des Corps Organiques. Vol. 1. Steiner G. & Albin F.E. 1946: Resuscitation of the nematode Tylenchus polyhypnus, n. sp., after almost 39 years' dormancy. J. Wash. Acad. Sci. 36: 97-99
Go to original source...
- Storey K.B. & Storey J.M. 1991: Biochemistry of cryoprotectants. In Lee R.E. & Denlinger D.L. (eds): Insects at Low Temperature. Chapman and Hall, New York and London, pp. 64-93
Go to original source...
- Tunnacliffe A., Lapinski J. & McGee B. 2004: Hydrobiologia, in press. Ushatinskaya R.S. 1990: Latent Life and Anabiosis. Nauka, Moscow, 183 pp. (in Russian)
- Watanabe M., Kikawada T., Minagawa N., Yukuhiro F. & Okuda T. 2002: Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol. 205: 2799-2802
Go to original source...
- Watanabe M., Kikawada T. & Okuda T. 2003: Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J. Exp. Biol. 206: 2281-2286
Go to original source...
- Westh P. & Ramlov H. 1991: Trehalose accumulation in the tardigrades Adorybiotus coronifer during anhydrobiosis. J. Exp. Zool. 258: 303-311
Go to original source...
- Wharton D.A. 1996: Water loss and morphological changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci. J. Exp. Biol. 199: 1085-1093
Go to original source...
- Wharton D.A. 2002: Nematode survival strategies. In Lee D.L. (ed.): The Biology of Nematodes. Taylor & Francis, London, pp. 389-411
Go to original source...
- Wharton D.A. & Barclay S. 1993: Anhydrobiosis in the free-living Antarctic nematode, Panagrolainus davidi (Nematoda: Rhabditidae). Fundam. Appl. Nematol. 16: 17-22
- Wharton D.A. & Lemmon J. 1998: Ultrastructural changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci. Tissue Cell 30: 312-323
Go to original source...
- Wolkers W.F., Tablin F. & Crowe J.H. 2002: From anhydrobiosis to freeze-drying of eukaryotic cells. Comp. Biochem. Physiol. (A) 131: 535-543
Go to original source...
- Wolkers W.F., Walker N.J., Tablin F. & Crowe J.H. 2001: Human platelets loaded with trehalose survive freezing-drying. Cryobiology 42: 79-87
Go to original source...
- Womersley C. 1980: The effect of different periods of dehydration/rehydration periods upon the ability of second stage larvae of Anguina tritici to survive desiccation at 0% relative humidity. Ann. Appl. Biol. 95: 221-224
Go to original source...
- Womersley C. 1987: A reevaluation of strategies employed by nematode anhydrobiotes in relation to their natural environment. In Veech J.A. & Dickson D.W. (eds): Vistas on Nematology. Society of Nematologists, Hyattsville, MD, pp. 165-173
- Womersley C. & Smith L. 1981: Anhydrobiosis in nematodes - I. the role of glycerol, myo-inositol and trehalose during desiccation. Comp. Biochem. Physiol. (B) 70: 579-586
Go to original source...
- Wright J.C., Westh P. & Ramlov H. 1992: Cryptobiosis in tardigrada. Biol. Rev. 67: 1-29
Go to original source...
- Yamaguchi-Shinozaki K. 2003: Molecular mechanisms of plant responses and tolerance of drought and cold stresses. Cryobiol. Cryotech. 49: 21-27 (in Japanese)
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.