Eur. J. Entomol. 122: 302-307, 2025 | DOI: 10.14411/eje.2025.034

Temporal and spatial variation of Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) captures in lowland forests: Positive effect of tree species diversity on the abundance of an invasive ambrosia beetleOriginal article

Marek DZURENKO ORCID...1, Ján KULFAN ORCID...2, Juraj GALKO ORCID...3, Peter ZACH2
1 Technical University in Zvolen, Faculty of Forestry, Department of Integrated Forest and Landscape Protection, T.G. Masaryka 24, 960 01 Zvolen, Slovakia; e-mail: marek.dzurenko@gmail.com
2 Slovak Academy of Sciences, Institute of Forest Ecology, ¥. ©túra 2, 960 01 Zvolen, Slovakia, e-mails: kulfan@ife.sk, zach@ife.sk
3 National Forest Centre, T.G. Masaryka 22, 960 92 Zvolen, Slovakia; e-mail: juraj.galko@nlcsk.org

Invasive ambrosia beetles, such as the black stem borer (Xylosandrus germanus), pose serious ecological and economic threats to various natural, semi-natural and artificial ecosystems with suitable host plants. This study investigates the temporal and spatial variation in X. germanus abundance within lowland, mostly oak-dominated forests of the West Carpathians, focusing on the influence of tree species diversity, altitude, and forest stand age. Our findings reveal a strong positive correlation between tree diversity and X. germanus abundance, suggesting that diverse forests provide favourable conditions for beetle establishment. Altitude also exhibited a significant positive effect, likely due to increasing humidity and more suitable microclimatic conditions at higher elevations. In contrast, forest age had a small but significant negative effect, potentially due to reduced availability of stressed host trees in older stands. Beetle activity peaked in early to mid-June, in agreement with previous observations of phenology of this species in Central Europe. These findings contribute to our understanding of the ecological factors shaping X. germanus populations and provide valuable insights for forest management strategies aimed at mitigating the spread of invasive ambrosia beetles.

Keywords: Black stem borer, Xyleborini, invasive species, flight activity, ethanol, Slovakia

Received: June 3, 2025; Revised: September 19, 2025; Accepted: September 19, 2025; Published online: November 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
DZURENKO, M., KULFAN, J., GALKO, J., & ZACH, P. (2025). Temporal and spatial variation of Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) captures in lowland forests: Positive effect of tree species diversity on the abundance of an invasive ambrosia beetle. EJE122, Article 302-307. https://doi.org/10.14411/eje.2025.034
Download citation

Attachments

Download fileS1.xlsx

File size: 13.43 kB

References

  1. Akaike H. 1974: A new look at the statistical model identification. - IEEE Trans. Autom. Control 19: 716-723. Go to original source...
  2. Bates D., Mächler M., Bolker B. & Walker S. 2015: Fitting linear mixed-effects models using lme4. - J. Stat. Softw. 67: 1-48. Go to original source...
  3. Batra L.R. 1963: Ecology of ambrosia fungi and their dissemination by beetles. - Trans. Kans. Acad. Sci. 66: 213-236. Go to original source...
  4. Biedermann P.H. & Taborsky M. 2011: Larval helpers and age polyethism in ambrosia beetles. - Proc. Natl. Acad. Sci. U.S.A. 108: 17064-17069. Go to original source...
  5. Biedermann P.H., Müller J., Grégoire J.C., Gruppe A., Hagge J., Hammerbacher A. Hofstetter R.W., Kandasamy D., Kolarik M., Kostovcik M. et al. 2019: Bark beetle population dynamics in the Anthropocene: challenges and solutions. - Trends Ecol. Evol. 34: 914-924. Go to original source...
  6. Björklund N. & Boberg J. 2017: Rapid Pest Risk Analysis Xyleborinus attenuatus. Swedish University of Agricultural Sciences, Upsala, 17 pp.
  7. Bolker B.M., Brooks M.E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M.H.H. & White J.S.S. 2009: Generalized linear mixed models: a practical guide for ecology and evolution. - Trends Ecol. Evol. 24: 127-135. Go to original source...
  8. Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A., Skaug H.J., Mächler M. & Bolker B.M. 2017: glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. - R Journal 9: 378-400. Go to original source...
  9. Bruge H. 1995: Xylosandrus germanus (Blandford, 1894) (Belg. sp. nov.) (Coleoptera: Scolytidae). - Bull. Ann. Soc. R. Belg. Entomol. 131: 249-264.
  10. Bussler H., Bouget C., Brustel H., Brändle M., Riedinger V., Brandl R. & Müller J. 2011: Abundance and pest classification of scolytid species (Coleoptera: Curculionidae, Scolytinae) follow different patterns. - For. Ecol. Manag. 262: 1887-1894. Go to original source...
  11. Castrillo L.A., Griggs M.H. & Vandenberg J.D. 2012: Brood production by Xylosandrus germanus (Coleoptera: Curculionidae) and growth of its fungal symbiont on artificial diet based on sawdust of different tree species. - Environ. Entomol. 41: 822-827. Go to original source...
  12. Dzurenko M. & Hulcr J. 2022: Ambrosia beetles. - Curr. Biol. 32: R61-R62. Go to original source...
  13. Dzurenko M., Ranger C.M., Hulcr J., Galko J. & Kaòuch P. 2021: Origin of non-native Xylosandrus germanus, an invasive pest ambrosia beetle in Europe and North America. - J. Pest Sci. 94: 553-562. Go to original source...
  14. Dzurenko M., Galko J., Kulfan J., Váµka J., Holec J., Saniga M., Zúbrik M., Vakula J., Ranger C.M., Skuhrovec J., Jauschová T. & Zach P. 2022: Can the invasive ambrosia beetle Xylosandrus germanus withstand an unusually cold winter in the West Carpathian forest in Central Europe? - Folia Oecol. 49: 1-8. Go to original source...
  15. Fiala T. & Holu¹a J. 2023: Distribution of the invasive ambrosia beetles Xyleborinus attenuatus Blandford, 1894 (Coleoptera: Curculionidae: Scolytinae) in the Czech Republic (Central Europe). - Cent. Eur. For. J. 70: 34-40. Go to original source...
  16. Fiala T., Holu¹a J., Procházka J., Èí¾ek L., Dzurenko M., Foit J., Galko J., Ka¹ák J., Kulfan J. & Lakatos F. 2020: Xylosandrus germanus in Central Europe: Spread into and within the Czech Republic. - J. Appl. Entomol. 144: 423-433. Go to original source...
  17. Galko J. 2013: First record of the ambrosia beetle, Xylosandrus germanus (Blandford, 1894) (Coleoptera: Curculionidae, Scolytinae) in Slovakia. - Forestry J. 58: 279.
  18. Galko J., Nikolov C., Kimoto T., Kunca A., Gubka A., Vakula J., Zúbrik M. & Ostrihoò M. 2014: Attraction of ambrosia beetles to ethanol baited traps in a Slovakian oak forest. - Biologia 69: 1376-1383. Go to original source...
  19. Galko J., Kunca A., Rell S., Zúbrik M., Nikolov C., Gubka A. & Vakula J. 2015: The black wood borer (Xylosandrus germanus) as a new technical wood pest in Slovakia. In Kunca A. (ed.): Current Issues in Forest Protection. Proceedings of 24th Annual International Conference, January 29 and 30, 2015, Nový Smokovec. National Forestry Center, Zvolen, pp. 35-40 [in Slovak].
  20. Galko J., Dzurenko M., Ranger C.M., Kulfan J., Kula E., Nikolov C., Zúbrik M. & Zach P. 2019: Distribution, habitat preference, and management of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae) in European forests with an emphasis on the West Carpathians. - Forests 10: 10, 18 pp. Go to original source...
  21. Gomez D.F., Rabaglia R.J., Fairbanks K.E.O. & Hulcr J. 2018: North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). - ZooKeys 768: 19-68. Go to original source...
  22. Gossner M.M., Falck K. & Weisser W.W. 2019: Effects of management on ambrosia beetles and their antagonists in European beech forests. - For. Ecol. Manag. 437: 126-133. Go to original source...
  23. Hartig F. 2022: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R Package Version 0.4.6. URL: https://CRAN.R-project.org/package=DHARMa
  24. Hauptman T., Pavlin R., Gro¹elj P. & Jurc M. 2019: Distribution and abundance of the alien Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in different forest stands in central Slovenia. - iForest 12: 451-458. Go to original source...
  25. Henin J.M. & Versteirt V. 2004: Abundance and distribution of Xylosandrus germanus (Blandford 1894) (Coleoptera, Scolytidae) in Belgium: new observations and an attempt to outline its range. - J. Pest Sci. 77: 57-63. Go to original source...
  26. Holu¹a J., Fiala T. & Foit J. 2021: Ambrosia beetles prefer closed canopies: a case study in oak forests in Central Europe. - Forests 12: 1223, 16 pp. Go to original source...
  27. Hulcr J. & Dunn R. 2011: The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. - Proc. R. Soc. (B) 278: 2866-2873. Go to original source...
  28. Hulcr J. & Stelinski L.L. 2017: The ambrosia symbiosis: from evolutionary ecology to practical management. - Annu. Rev. Entomol. 62: 285-303. Go to original source...
  29. Jordal B.H., Beaver R.A. & Kirkendall L.R. 2001: Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. - Glob. Ecol. Biogeogr. 10: 345-357. Go to original source...
  30. Kendra P.E., Montgomery W.S., Niogret J. & Epsky N.D. 2013: An uncertain future for American Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). - For. Ecol. Manag. 291: 9-17. Go to original source...
  31. Kirkendall L.R. 1983: The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). - Zool. J. Linn. Soc. 77: 293-352. Go to original source...
  32. Kní¾ek M. 1988: Faunistic records from Czechoslovakia. Coleoptera, Scolytidae: Xyleborus alni Niijima, 1909. - Acta Entomol. Bohemoslov. 85: 396.
  33. Lüdecke D., Ben-Shachar M.S., Patil I., Waggoner P. & Makowski D. 2021: Performance: An R package for assessment, comparison, and testing of statistical models. - J. Open Source Softw. 6: 3139, 8 pp. Go to original source...
  34. Lutz J.A. & Halpern C.B. 2006: Tree mortality during early forest development: a long-term study of rates, causes, and consequences. - Ecol. Monogr. 76: 257-275. Go to original source...
  35. Nakagawa S. & Schielzeth H. 2013: A general and simple method for obtaining R<sup>2</sup> from generalized linear mixed-effects models. - Methods Ecol. Evol. 4: 133-142. Go to original source...
  36. Marini L., Haack R.A., Rabaglia R.J., Toffolo E.P., Battisti A. & Faccoli M. 2011: Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. - Biol. Invas. 13: 2275-2288. Go to original source...
  37. Oliver J.B. & Mannion C.M. 2001: Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. - Environ. Entomol. 30: 909-918. Go to original source...
  38. Park J. & Reid M.L. 2007: Distribution of a bark beetle, Trypodendron lineatum, in a harvested landscape. - For. Ecol. Manag. 242: 236-242. Go to original source...
  39. Peer K. & Taborsky M. 2005: Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. - Evolution 59: 317-323. Go to original source...
  40. Ploetz R.C., Hulcr J., Wingfield M.J. & De Beer Z.W. 2013: Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? - Plant Dis. 97: 856-872. Go to original source...
  41. R Core Team 2023: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, URL: https://www.R-project.org/
  42. Ranger C.M., Reding M.E., Persad A.B. & Herms D.A. 2010: Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. - Agric. For. Entomol. 12: 177-185. Go to original source...
  43. Ranger C.M., Reding M.E., Schultz P.B., Oliver J.B., Frank S.D., Addesso K.M., Chong J.H., Sampson B., Werle C., Gill S. & Krause C. 2016: Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. - J. Integr. Pest Manag. 7: 1-23. Go to original source...
  44. Ranger C.M., Reding M.E., Addesso K., Ginzel M. & Rassati D. 2021: Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. - Can. Entomol. 153: 103-120. Go to original source...
  45. Rassati D., Faccoli M., Battisti A. & Marini L. 2016: Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. - Biol. Invas. 18: 2809-2821. Go to original source...
  46. Reed S.E., Juzwik J., English J.T. & Ginzel M.D. 2015: Colonization of artificially stressed black walnut trees by ambrosia beetle, bark beetle, and other weevil species (Coleoptera: Curculionidae) in Indiana and Missouri. - Environ. Entomol. 44: 1455-1464. Go to original source...
  47. Smith S.M. & Hulcr J. 2015: Scolytus and other economically important bark and ambrosia beetles. In Vega F.E. & Hofstetter R.W. (eds): Bark Beetles. Biology and Ecology of Native and Invasive Species. 1st ed. Elsevier Academic Press, Amsterdam, pp. 495-531. Go to original source...
  48. Steininger M.S., Hulcr J., ©igut M. & Lucky A. 2015: Simple and efficient trap for bark and ambrosia beetles (Coleoptera: Curculionidae) to facilitate invasive species monitoring and citizen involvement. - J. Econ. Entomol. 108: 1115-1123. Go to original source...
  49. Watanabe K., Murakami M., Hirao T. & Kamata N. 2014: Species diversity estimation of ambrosia and bark beetles in temperate mixed forests in Japan based on host phylogeny and specificity. - Ecol. Res. 29: 299-307. Go to original source...
  50. Weber B.C. & McPherson J.E. 1983: Life history of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). - Ann. Entomol. Soc. Am. 76: 455-462. Go to original source...
  51. Westoby M. 1984: The self-thinning rule. - Adv. Ecol. Res. 14: 167-225. Go to original source...
  52. Wickham H. 2016: ggplot2: Elegant Graphics for Data Analysis. Springer, New York, 260 pp. URL: https://ggplot2.tidyverse.org
  53. Wood S. 2017: Generalized Additive Models: An Introduction with R. 2nd ed. Chapman and Hall/CRC, New York, 496 pp.
  54. Zach P., Topp W. & Kulfan J. 2001: Colonization of two alien ambrosia species (Coleoptera, Scolytidae) on debarked spruce logs. - Biologia 56: 175-181.
  55. Zuur A.F., Ieno E.N. & Elphick C.S. 2010: A protocol for data exploration to avoid common statistical problems. - Methods Ecol. Evol. 1: 3-14. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.