Eur. J. Entomol. 114: 379-390, 2017 | DOI: 10.14411/eje.2017.049

An overview of irritans-mariner transposons in two Mayetiola species (Diptera: Cecidomyiidae)

Wiem BEN AMARA1, Salma DJEBBI1, Dhia BOUKTILA1,2, Mohamed MAKNI1, Hanem MAKNI1,3, Maha MEZGHANI-KHEMAKHEM1,*
1 Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique (UR11ES10), Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; e-mails: wiem.benamara7@gmail.com, salma.djebbi@fst.utm.tn, dhia_bouktila2000@yahoo.fr, mdmakni98@gmail.com, hanem.makni@isajc.rnu.tn, maha.mezghani@fst.utm.tn
2 Institut Supérieur de Biotechnologie de Béja (ISBB) - Université de Jendouba, Tunisia
3 Institut Supérieur de l'Animation pour la Jeunesse et la Culture (ISAJC), Université de Tunis, Bir El Bey, Tunisia

Mariner-like elements (MLEs) are widespread Class II transposable elements in insects that are subdivided into several subfamilies. In the current study, we carried out in silico analysis and in vitro experiments to identify MLEs belonging to the irritans subfamily in two cecidomyiid flies, Mayetiola destructor and M. hordei. In silico investigation of M. destructor genome allowed the identification of 25 irritans-like elements, which were mostly defective due to several mutations. These defective forms might be the remnants of active elements that ancestrally invaded the host genome. Structural analyses, including signature motifs and transposase-encoding ORFs, revealed structural heterogeneity and the presence of two full length copies. Five consensuses, reflecting the probable evolutionary groups of these elements, were constructed, based on a similarity matrix. The first consensus (Maymarcons1) belonged to Himar1-like elements reported in other insects, while the remaining four (Maymarcons2 to 5) seemed to be more specific to Cecidomyiidae. Moreover, the presence of elements belonging to the Maymarcons4 group was ascertained by PCR amplification, in both Mayetiola species, and was further identified in the Transcriptome Shotgun Assembly (TSA) of the orange fly, Sitodiplosis mosellana (Cecidomyiidae), suggesting the existence of irritans elements within the Cecidomyiidae, which were derived from an ancestral species by vertical transmission during speciation. On the other hand, consensuses that are specific to M. destructor could be derived from a more recent invasion. This study suggests that both M. destructor and M. hordei genomes have been invaded by irritans elements many times with at least two different evolutionary histories.

Keywords: Diptera, Cecidomyiidae, Mayetiola destructor, Mayetiola hordei, Sitodiplosis mosellana, irritans subfamily, in silico analysis, in vitro experiments, mariner-like element, transposons

Received: May 8, 2017; Accepted: September 4, 2017; Revised: September 4, 2017; Published online: October 5, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
BEN AMARA, W., DJEBBI, S., BOUKTILA, D., MAKNI, M., MAKNI, H., & MEZGHANI-KHEMAKHEM, M. (2017). An overview of irritans-mariner transposons in two Mayetiola species (Diptera: Cecidomyiidae). Eur. J. Entomol.114(1), 2017.000. doi: 10.14411/eje.2017.049.
Download citation

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990: Basic local alignment search tool. - J. Mol. Biol. 215: 403-410. Go to original source...
  2. Andrews J.D. & Gloor G.B. 1995: A role for the KP leucine zipper in regulating P element transposition in Drosophila melanogaster. - Genetics 141: 587-594.
  3. Arensburger P., Piégu B. & Bigot Y. 2016: The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine? - Mob. Genet. Elem. 6(6): e1256852. Go to original source...
  4. Ashburner M., Hoy M.A. & Peloquin J.J. 1998: Prospects for the genetic transformation of arthropods. - Insect Mol. Biol. 7: 201-213. Go to original source...
  5. Augé-Gouillou C., Hamelin M.H., Demattei M.V., Periquet G. & Bigot Y. 2001: The ITR binding domain of the mariner Mos1-transposase. - Mol. Genet. Genom. 265: 58-65. Go to original source...
  6. Barry E.G., Witherspoon D.J. & Lampe D.J. 2004: A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. - Genetics 166: 823-833. Go to original source...
  7. Behura S.K., Shukle R.H. & Stuart J.J. 2010: Assessment of structural variation and molecular mapping of insertion sites of Desmar-like elements in the Hessian fly genome. - Insect Mol. Biol. 19: 707-715. Go to original source...
  8. Ben Lazhar-Ajroud W., Caruso A., Mezghani M., Bouallegue M., Tastard E., Denis F., Rouault J.D., Makni H., Capy P., Chenais B., Makni M. & Casse N. 2016: Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications. -Naturwissenschaften 103: 64, 14 pp.
  9. Bigot Y., Brillet B. & Auge-Gouillou C. 2005: Conservation of palindromic and mirror motifs within inverted terminal repeats of mariner-like elements. - J. Mol. Biol. 351: 108-116. Go to original source...
  10. Bire S. & Rouleux-Bonnin F. 2012: Transposable elements as tools for reshaping the genome: it is a huge world after all! -Meth. Mol. Biol. 859: 1-28. Go to original source...
  11. Black D.M., Jackson M.S., Kidwell M.G. & Dover G.A. 1987: KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. - EMBO J. 6: 4125-4135.
  12. Brillet B., Bigot Y. & Auge-Gouillou C. 2007: Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. - Genetica 130: 105-120. Go to original source...
  13. Brunet F., Giraud T., Godin F. & Capy P. 2002: Do deletions of Mos1-like elements occur randomly in the Drosophilidae family? - J. Mol. Evol. 54: 227-234. Go to original source...
  14. Bucher E., Reinders J. & Mirouze M. 2012: Epigenetic control of transposon transcription and mobility in Arabidopsis. - Curr. Opin. Plant Biol. 15: 503-510. Go to original source...
  15. Bui Q.T., Delauriere L., Casse N., Nicolas V., Laulier M. & Chenais B. 2007: Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. - Gene 396: 248-256. Go to original source...
  16. Chenais B., Caruso A., Hiard S. & Casse N. 2012: The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. - Gene 509: 7-15. Go to original source...
  17. Claudianos C., Brownlie J., Russell R., Oakeshott J. & Whyard S. 2002: maT - a clade of transposons intermediate between mariner and Tc1. - Mol. Biol. Evol. 19: 2101-2109. Go to original source...
  18. Combet C., Blanchet C., Geourjon C. & Deleage G. 2000: NPS@: Network protein sequence analysis. - Trends Biochem. Sci. 25: 147-150. Go to original source...
  19. Feschotte C. & Pritham E.J. 2007: DNA transposons and the evolution of eukaryotic genomes. - Annu. Rev. Genet. 41: 331-368. Go to original source...
  20. Filée J., Rouault J.D., Harry M. & Hua-Van A. 2015: Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus. - BMC Genom. 16: 1061, 17 pp. Go to original source...
  21. Finnegan D.J. 1989: Eukaryotic transposable elements and genome evolution. - Trends Genet. 5: 103-107. Go to original source...
  22. Halaimia-Toumi N., Casse N., Demattei M.V., Renault S., Pradier E., Bigot Y. & Laulier M. 2004: The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. - J. Mol. Evol. 59: 747-760. Go to original source...
  23. Handler A.M. & O'Brochta D.A. 2012: Transposable Elements for Insect Transformation. Acadamic Press, London, pp. 90-133.
  24. Hartl D.L., Lohe A.R. & Lozovskaya E.R. 1997: Modern thoughts on an ancyent marinere: function, evolution, regulation. - Annu. Rev. Genet. 31: 337-358. Go to original source...
  25. Hirsch C.D. & Springer N.M. 2017: Transposable element influences on gene expression in plants. - Biochim. Biophys. Acta 1860: 157-165. Go to original source...
  26. Jacobson J.W., Medhora M.M. & Hartl D.L. 1986: Molecular structure of a somatically unstable transposable element in Drosophila. - Proc. Natl. Acad. Sci. USA 83: 8684-8688. Go to original source...
  27. Katoh K. & Standley D.M. 2013: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. - Mol. Biol. Evol. 30: 772-780. Go to original source...
  28. Kharrat I., Mezghani M., Casse N., Denis F., Caruso A., Makni H., Capy P., Rouault J.D., Chenais B. & Makni M. 2015: Characterization of mariner-like transposons of the mauritiana subfamily in seven tree aphid species. - Genetica 143: 63-72. Go to original source...
  29. Kidwell M.G. & Lisch D.R. 2001: Perspective: transposable elements, parasitic DNA, and genome evolution. - Evolution 55: 1-24. Go to original source...
  30. Lampe D.J., Churchill M.E. & Robertson H.M. 1996: A purified mariner transposase is sufficient to mediate transposition in vitro. - EMBO J. 15: 5470-5479.
  31. Lampe D.J., Witherspoon D.J., Soto-Adames F.N. & Robertson H.M. 2003: Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. - Mol. Biol. Evol. 20: 554-562. Go to original source...
  32. Largaespada D.A. 2003: Generating and manipulating transgenic animals using transposable elements. - Reprod. Biol. Endocrinol. 1: 80, 10 pp. Go to original source...
  33. Le Rouzic A. & Capy P. 2005: The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. - Genetics 169: 1033-1043. Go to original source...
  34. Letunic I. & Bork P. 2007: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. - Bioinformatics 23: 127-128. Go to original source...
  35. Lin J.R. & Hu J. 2013: SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring. - PLoS one 8(10): e76864, 12 pp. Go to original source...
  36. Lohe A.R. & Hartl D.L. 2002: Efficient mobilization of mariner in vivo requires multiple internal sequences. - Genetics 160: 519-526.
  37. Lohe A.R., Moriyama E.N., Lidholm D.A. & Hartl D.L. 1995: Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. - Mol. Biol. Evol. 12: 62-72. Go to original source...
  38. Mezghani Khemakhem M., Makni H. & Marrakchi M. 2002: Identification par PCR-RFLP de marqueurs mitochondriaux chez deux espèces de Mayetiola nuisibles aux cultures de céréales (Diptera: Cecidomyiidae). - Ann. Soc. Entomol. Fr. 38: 277-282.
  39. Monacell J.T. & Carbone I. 2014: Mobyle SNAP Workbench: a web-based analysis portal for population genetics and evolutionary genomics. - Bioinformatics 30: 1488-1490. Go to original source...
  40. Munoz-Lopez M. & Garcia-Perez J.L. 2010: DNA transposons: nature and applications in genomics. - Curr. Genom. 11: 115-128. Go to original source...
  41. Munoz-Lopez M., Siddique A., Bischerour J., Lorite P., Chalmers R. & Palomeque T. 2008: Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. - J. Mol. Biol. 382: 567-572. Go to original source...
  42. Negoua A., Rouault J.D., Chakir M. & Capy P. 2013: Internal deletions of transposable elements: the case of Lemi elements. - Genetica 141: 369-379. Go to original source...
  43. Nicholas K.B., Nicholas H.B.J. & Deerfield D.W. 1997: GeneDoc: analysis and visualization of genetic variation. - Embnew. News 4(1): 14 pp.
  44. Panaud O. 2016: Horizontal transfers of transposable elements in eukaryotes: the flying genes. - C. R. Biol. 339: 296-299. Go to original source...
  45. Peccoud J., Loiseau V., Cordaux R. & Gilbert C. 2017: Massive horizontal transfer of transposable elements in insects. - Proc. Natl. Acad. Sci. USA 114: 4721-4726. Go to original source...
  46. Piégu B., Bire S., Arensburger P. & Bigot Y. 2015: A survey of transposable element classification systems - a call for a fundamental update to meet the challenge of their diversity and complexity. - Mol. Phylogenet. Evol. 86: 90-109. Go to original source...
  47. Pietrokovski S. & Henikoff S. 1997: A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. - Mol. Gen. Genet. 254: 689-695. Go to original source...
  48. Plasterk R.H. 1996: The Tc1/mariner transposon family. - Curr. Top. Microbiol. Immunol. 204: 125-143. Go to original source...
  49. Plasterk R.H., Izsvak Z. & Ivics Z. 1999: Resident aliens: the Tc1/mariner superfamily of transposable elements. - Trends Genet. 15: 326-332. Go to original source...
  50. Rigal M. & Mathieu O. 2011: A "mille-feuille" of silencing: Epigenetic control of transposable elements. - Biochim. Biophys. Acta 1809: 452-458. Go to original source...
  51. Robertson H.M. 1993: The mariner transposable element is widespread in insects. - Nature 362: 241-245. Go to original source...
  52. Robertson H.M. & Asplund M.L. 1996: Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. - Insect Biochem. Mol. Biol. 26: 945-954. Go to original source...
  53. Robertson H.M. & Lampe D.J. 1995: Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. - Mol. Biol. Evol. 12: 850-862.
  54. Robertson H.M. & MacLeod E.G. 1993: Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. - Insect Mol. Biol. 2: 125-139. Go to original source...
  55. Robertson H.M. & Martos R. 1997: Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. - Gene 205: 219-228. Go to original source...
  56. Rouleux-Bonnin F., Petit A., Demattei M.V. & Bigot Y. 2005: Evolution of full-length and deleted forms of the mariner-like element, Botmar1, in the genome of the bumble bee, Bombus terrestris (Hymenoptera: Apidae). - J. Mol. Evol. 60: 736-747. Go to original source...
  57. Rubin E. & Levy A.A. 1997: Abortive gap repair: underlying mechanism for Ds element formation. - Mol. Cell. Biol. 17: 6294-6302. Go to original source...
  58. Russell V.W. & Shukle R.H. 1997: Molecular and cytological analysis of a mariner transposon from Hessian fly. - J. Hered. 88: 72-76. Go to original source...
  59. Ryder E. & Russell S. 2003: Transposable elements as tools for genomics and genetics in Drosophila. - Brief. Funct. Genom. Proteom. 2: 57-71. Go to original source...
  60. Sambrook J., Fritsch E.F. & Maniatis N. 2011: Screening of bacterial recombinants: Strategies and preventing false positives. In Brown P.G. (ed.): Molecular Cloning - Selected Applications in Medicine and Biology. Intech, Rijeka, 324 pp.
  61. Shukle R.H. & Russell V.W. 1995: Mariner transposase-like sequences from the Hessian fly, Mayetiola destructor. - J. Hered. 86: 364-368. Go to original source...
  62. Sinzelle L., Chesneau A., Bigot Y., Mazabraud A. & Pollet N. 2006: The mariner transposons belonging to the irritans subfamily were maintained in chordate genomes by vertical transmission. - J. Mol. Evol. 62: 53-65. Go to original source...
  63. Sunnucks P. & Hales D.F. 1996: Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). - Mol. Biol. Evol. 13: 510-524. Go to original source...
  64. Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013: Mega6: Molecular evolutionary genetics analysis version 6.0. - Mol. Biol. Evol. 30: 2725-2729. Go to original source...
  65. Wallau G.L., Capy P., Loreto O. & Hua-Van A. 2014: Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. - BMC Genomics 15: 727, 19 pp. Go to original source...
  66. Waterhouse A.M., Procter J.B., Martin D.M., Clamp M. & Barton G.J. 2009: Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. - Bioinformatics 25: 1189-1191. Go to original source...
  67. Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P. & Schulman A.H. 2007: A unified classification system for eukaryotic transposable elements. - Nat. Rev. Genet. 8: 973-982. Go to original source...
  68. Yuan Y.W. & Wessler S.R. 2011: The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. - Proc. Natl. Acad. Sci. USA 108: 7884-7889. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.