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Abstract. To date, thousands of microRNAs (miRNAs) and their precursors (pre-miRNAs) have been identified in insects and their
nucleotide sequences deposited in the miRBase database. In the present work, we have systematically analyzed, utilizing bioinfor-
matics tools, the featural differences between human and insect pre-miRNAs, as well as differences across 24 insect species. Results
showed that the nucleotide composition, sequence length, nucleotides preference and secondary structure features between human
and insects were different. Subsequently, with the aid of three available SVM-based prediction programs, pre-miRNA sequences
were evaluated and given corresponding scores. Thus it was found that of 2633 sequences from the 24 chosen insect species, 2229
(84.7%) were successfully recognized by the Mirident classifier, higher than Triplet-SVM (72.5%) and PMirP (72.6%). In contrast,
four species, including the domesticated silkworm, Bombyx mori L., the fruit fly, Drosophila melanogaster Meigen, the honeybee,
Apis mellifera L. and the red flour beetle, Tribolium castaneum (Herbst), were found to be largely responsible for the poor perform-
ance of some sequence matching. Compared with other species, B. mori especially showed the worst performance with the lowest
average MFE index (0.73). Collectively these results pave the way for understanding specificity and diversity of miRNA precursors

in insects, and lay the foundation for the further development of more suitable algorisms for insects.

INTRODUCTION

MicroRNAs (miRNAs) are a large class of endogenous
and small non-coding RNAs approximately 22 nucleo-
tides (nt) in length that regulate gene expression at a post-
transcriptional level and play various fundamental roles in
multiple biological processes, including cell differentia-
tion, proliferation and apoptosis as well as disease proc-
esses (Ambros, 2004; Bartel, 2004; Bushati & Cohen,
2007; Wang & Li, 2007). According to recent studies,
mature miRNAs are originally transcribed from a long
primary miRNA (pri-miRNA) and processed into a 60—70
nt miRNA precursor (pre-miRNA) with the aid of two
different enzymes, RNA polymerase II and RNase III
Drosha, respectively (Lee et al., 2003, 2004). Since their
initial discovery in the nematode, Caenorhabditis ele-
gans, the study of miRNAs has become a rapidly growing
field in the life sciences (Lee et al., 1993). Compared with
miRBase 16.0 including 142 species, the latest version
miRBasel8.0 has grown to 18226 miRNA gene loci in
168 species and 21643 distinct mature miRNA sequences
(Kozomara & Griffiths-Jones, 2011), directly attributable
to the development of deep sequencing technology.

Although the founding members of miRNAs, such as
lin-4 and let-7, were identified by a genetic screening
approach, computational approaches still play a critical
role in the identification of novel miRNAs (Griffiths-
Jones, 2004; Jones-Rhoades & Bartel, 2004; Li et al.,
2010; Dong et al., 2012). Previous studies reported that
miRNA genes were conserved in the primary sequences

and secondary structures (Gesellchen & Boutros, 2004;
Nam et al., 2005; Wang et al., 2005, 2007). Thus, for
most computational approaches attempting to identify
miRNAs, one of the critical discoveries has been the
finding that all pre-miRNAs have a stem-loop hairpin in
their secondary structure, as predicted by RNAfold or
Mfold (Mathews et al., 1999; Hofacker, 2003; Zuker,
2003; Unver et al., 2009). To date, more and more com-
putational approaches have been developed and widely
applied to predict miRNAs from nematodes (Lim et al.,
2003b), flies (Lai et al., 2003), humans (Lim et al.,
2003a) and plants (Jones-Rhoades & Bartel, 2004). How-
ever, some such studies are limited when there are no
known close homologies between compared sequences or
enough information about species genomes (Bentwich et
al., 2005). Three programs, Triplet-SVM, PMirP and the
latest Mirident classifier, which can be used to identify
pre-miRNAs without utilizing comparative genomics
information, are all based on support vector machine
(SVM) and reported to be of superior performance in pre-
dicting pre-miRNAs from humans (Xue et al., 2005; Zhao
et al., 2010; Liu et al., 2012). Triplet-SVM is based on a
set of novel structure features of stem-loops, while PMirP
utilizes various features to distinguish real pre-miRNAs
(Xue et al., 2005; Zhao et al., 2010). Unlike them, Miri-
dent classifier applies the software Teiresias to recognize
sequence-structure motifs (ss-motifs) of different length
in data sets (Liu et al., 2012). Undoubtedly, all the pro-
grams can be used to distinguish real pre-miRNAs from
pseudo ones, on the other hand, this function can also be
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utilized to illustrate the features differences of pre-
miRNAs.

In our study, utilizing information from the
miRBasel8.0 database, the featural differences of human
and insect pre-miRNA were systematically analyzed and
compared, including composition and preference of
nucleotides and secondary structure characteristics. At the
same time, three programs were separately applied to pre-
dict each pre-miRNA dataset. The differences across 24
species were also compared with the intention of illus-
trating the diversity among them and providing more
information to bioinformaticians for developing more
efficient tools for predicting insect pre-miRNAs. Moreo-
ver, by comparing the performance of three programs, the
study aims to help those who are engaged in miRNA
research find more suitable research tools to study insects.

MATERIAL AND METHODS

Data sets

Firstly, all the miRNA precursors were downloaded from the
miRNA registry database release 18.0 (November 2011)
(http://www.mirbase.org/ftp.shtml). Human miRNA hairpins
contain 1527 sequences, while there are 2633 sequences avail-
able for 24 insect species. In order to reduce bias caused by
redundant sequences, all the sequences were gathered together
and redundancies filtered (sequence identity >90%) using
CD-HIT software which was originally written by Weizhong Li
(http://www.bioinformatics.org/cd-hit/).

Three types of prediction software

Two of the important processes, shared by three types of soft-
ware, are constructing the training models and adopting Support
Vector Machine (SVM) to classify pre-miRNAs versus non-pre-
miRNA hairpins. The ab initio program Triplet-SVM was
kindly provided by Chenhai Xue of Tsinghua University
(China). The PMirP classifier package was obtained on the web
(http://cest.jlu.edu.cn/ci/bioinformatics/MiRNA), which may be
run directly on Windows with a C++ compiler. The Mirident
classifier package, written by Xiugin Liu of the Chinese
Academy of Sciences, was executed with Python program sup-
port (http://www.regulatoryrna.org/pub/Mirident/). Different
versions of a third-party software libsvim were downloaded and
installed on the Linux system according to the manufacturer’s
instructions (Chang & Lin, 2011).

Statistical analysis

RNAfold  (http://www.tbi.univie.ac.at/~ivo/RNA/windoze/)
was used to predict the secondary structure and minimum free
energy (MFE) of each sequence (Hofacker et al., 1994).

In order to compare the hairpin features between human and
insects, numbers of nucleotides (A, U, C or G), MFE, length of
sequence, G + C content, and A + U content were calculated
and exported into an Excel file for each sequence. The Stu-
dent’s #-test was applied in order to compare nucleotide differ-
ence between human and insects. At the same time, the
nucleotide frequency at each position on the pre-miRNA
sequences was counted separately for analyzing nucleotides
preference. According to a previous report (Zhang et al., 2006),
(adjust MFE) AMFE and MFE index (MFEI) were calculated by
the following equations:

AMFE = (MFE/sequence length) x 100,
MFEI = AMFE/(100 x Ratiog c),
Ratiog ¢ stands for the content of (G + C).
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Fig. 1. Nucleotide composition and MFEs comparison of
microRNA precursors (pre-miRNAs) between humans and
insects.

In Table 2, the averages of MFEI for the 24 insect species
were calculated separately, and then, using 0.85 as an index,
numbers of pre-miRNAs with MFEI greater than 0.85 in each
species were counted. Subsequently, their percentages in each
species were also calculated, termed as PPM,ss (percentage of
pre-miRNAs with MFEI higher than 0.85).

RESULTS AND DISCUSSION

Features comparison of pre-miRNA precursors
between human and insects

Based on the sequences available in miRBase, stem-
loop features between human and insects were compared
according to nucleotide formation, contents of A-U or
C-G, full length, nucleotide preference and secondary
structure. After trimming high similar stem-loop
sequences in human and insects separately, 1428 and
1638 non-redundant sequences were retrieved, respec-
tively. Fig. 1A shows that the averages of two nucleotides
(A or U) are different between human and insects, while
the left two nucleotides G and C seem largely the same.
Moreover, two datasets contained more (A+U) nucleo-
tides than C-G pairs. The content of U is higher than oth-
ers, especially in insects, which contains around 31% U
compared to human (26.6%). A previous study revealed
that more than 28% of the nucleotides in miRNA precur-
sors were U, a fact which could be used to distinguish
miRNAs from other RNAs (Zhang et al., 2006). A higher
A-U pair content makes the pre-miRNA less stable and
easier to be processed into mature miRNA. Although the
sum and content of A-U in insects is obviously higher
than its counterpart, two pairs (A-U and C-G) in human
seem to show no obvious difference (Fig. 1B, C). Specifi-
cally, the average content of A-U in insects (56.5%) is
clearly higher than for C-G (43.5%), while these are
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Fig. 2. Nucleotide distribution and ratios of pre-miRNAs between humans and insects. A — Contents of four nucleotides from two
datasets were calculated and scattered on the X-axis according to their positions on the individual sequence. The length of waves
represents sequence length, while the width represents individual contents of nucleotides on each position. From the head-head fig-
ure, the left region represents 1428 non-redundant pre-miRNAs of humans, while the right one represents 1638 non-redundant pre-
cursor sequences of insects. The X-axis represents the order of nucleotide on their pre-miRNA sequence. B — The lines drew in four
colours represents the ratio of nucleotide content (RNC) for the same nucleotide between human and insects.

slightly different or even opposite in human (50.1% A-U
vs 49.9% G-C). The subsequent #-test also illustrated that
the content of the A-U pair was significantly higher in
insects than for the C-G pair, compared to no difference
in humans (P < 0.001).

Full length and minimum free energy (MFE) are two
important features used to distinguish miRNA precursors.
Some miRNA predictors often take them into account
when distinguishing real and pseudo sequences (Xue et
al., 2005; Jiang et al., 2007; Zhao et al., 2010; Liu et al.,
2012). There are also differences between two datasets in
both full length and MFEs (Fig. 1A, C). The average of
full length in insects is longer than human, but the MFE
in insects (—33.07 kcal/mol) is less negative than that in
humans (-39.83 kcal/mol) (Fig. 1C). Generally, as more
bonding interactions are possible in longer molecules,
increasing sequence length is responsible for the more
negative MFE (Seffens & Digby, 1999). However, this is
not surprising as the C-G pair content in insects is lower
than that in humans (Fig. 1B). Thermodynamic data illus-

trate that an A-U pair contributes —0.9 kcal/mol, while a
C-G pair contributes —2.9 kcal/mol (Freier et al., 1986).
Thereafter, contents of four nucleotides at each position
on the individual sequences from two datasets were cal-
culated and scattered on the X-axis according to their
positions on the individual sequence (Fig. 2A). From the
head-to-head figure, it is seen that both share the similar
colour waves of nucleotides. This result indicates that,
although the width of each wave shows slightly differ-
ently between insects and humans, they have similar
nucleotides preference. To better understand the differ-
ences between them, the ratio of nucleotide content
(RNC) for the identical nucleotides between humans and
insects was used to observe the diversity of the two data-
sets. For example, human/insects (A) represented the
RNC of adenine between humans and insects. If the value
of RNC for a nucleotide in a given position is greater than
1.0, it means that the content of this nucleotide in humans
is higher than that in insects. Due to their different full
lengths, 1-139 nucleotides shared by two datasets were
selected for further analysis. As shown in Fig. 2B, most
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TaBLE 1. Performance evaluation across 24 insect species.

pre-miRNA Accuracy (prediction sequences) )
Insects . Total/Non- . PMLP Mirident Full Negative
24 species redundant Triplet-SVM classifier classifier length MFE
Bombyx mori 487/441 0.46(483) 0.4(471) 0.69(487) 100.17 31.16
Acyrthosiphon pisum 123/101 0.85(118) 0.77(123) 0.94(123) 65.54 24.65
Aedes aegypti 101/72 0.86(97) 0.94(96) 0.92(101) 94.24 35.31
Anopheles gambiae 67/61 0.91(64) 0.95(63) 0.94(67) 95.22 37.47
Apis mellifera 174/168 0.61(170) 0.61(170) 0.81(174) 104.75 35.94
Culex quinquefasciatus 72/43 0.89(70) 0.89(70) 0.89(72) 89.36 34.25
Drosophila melanogaster 240/158 0.71(235) 0.78(226) 0.8(240) 94.58 33
Drosophila ananassae 76/36 0.89(72) 0.92(72) 0.92(76) 84.61 32.01
Drosophila erecta 81/22 0.82(78) 0.87(78) 0.91(81) 84.9 31.52
Drosophila grimshawi 82/25 0.8(82) 0.93(82) 0.94(82) 83.82 30.39
Drosophila mojavensis 71/21 0.88(69) 0.88(69) 0.94(71) 84.46 31.35
Drosophila persimilis 75/12 0.88(73) 0.9(73) 0.96(75) 85.12 32.16
Drosophila pseudoobscura 211/137 0.79(208) 0.83(197) 0.85(211) 97.22 35.54
Drosophila sechellia 78/4 0.92(72) 0.93(73) 0.92(78) 84.81 31.93
Drosophila simulans 136/53 0.79(131) 0.82(127) 0.9(136) 93.33 32.7
Drosophila virilis 74/12 0.86(72) 0.93(72) 0.95(74) 84.42 31.11
Drosophila willistoni 77/34 0.85(74) 0.89(74) 0.95(77) 85.47 30.75
Drosophila yakuba 80/1 0.89(76) 0.89(76) 0.94(80) 85.2 31.59
Heliconius melpomene 2/2 0.5(2) 1(2) 1(2) 79.5 37.2
Locusta migratoria 7/1 0.86(7) 1(7) 0.86(7) 60 25.44
Nasonia giraulti 32/0 0.9(31) 0.97(31) 0.94(32) 83.5 34.06
Nasonia longicornis 28/1 0.93(28) 0.96(27) 0.93(28) 84.64 34.02
Nasonia vitripennis 53/39 0.94(51) 1(46) 0.87(53) 93.58 39.42
Tribolium castaneum 206/194 0.77(204) 0.75(204) 0.79(206) 94.73 33.18
Total 2633 0.74(2567) 0.76(2529) 0.85(2633)
#Total 1536 0.85(1475) 0.89(1458) 0.92(1526)
Non-redundant sequences 1638 0.67(1582) 0.67(1556) 0.80(1638)
#Non-redundant sequences 841 0.77(812) 0.79(801) 0.88(841)
Redundancies 995 0.86(985) 0.90(973) 0.92(995)
MiRNAs conserved sequences 1597 0.87(1555) 0.89(1541) 0.95(1597)

Notes: Twenty-four insect species were used to evaluate the performance of three nucleotide analysis programs. Accuracy is the
degree of closeness of a measured quantity to its actual value (number in bracket). Non-redundant sequences stand for the output of
the above total of 2633 sequences in insects after filtering the redundancies (sequence identity >90%) using CD-HIT software.
miRNAs conserved sequences represent stem-loop sequences whose mature miRNAs were found to be conserved in at least two
insect species. The items with “#” stand for the corresponding sequences after removing four insect species, such as Bombyx mori,

Drosophila melanogaster, Apis mellifera and Tribolium castaneum.

RNCs of C and G from the forward 56 nucleotides are >>
1.0, contrary to A or U. But after around 76 nucleotides,
all nucleotide contents in humans seem smaller than those
in insects. This result means that the RNC of pre-miRNAs
between humans and insects are profoundly different, and
this difference might well be caused by insect species
diversity.

Global comparison and evaluation

Although three published programs had made great
strides in human hairpin prediction, there was evidence
that different features used for pre-miRNA detection
could largely influence the performance of an algorithm
(Jiang et al., 2007; Liu et al., 2012). We assumed that dif-
ference of prediction performance could be served as an
index to directly reflect the difference of stem-loop struc-
ture. On the other hand, it was also necessary to evaluate

16

the feasibility and performance of an algorithm before
employing it for different cases.

As shown in Table 1, Mirident classifier shows the best
performance, achieving an overall accuracy of 84.7% for
2633 sequences tests. There are 1909 out of 2567 pre-
miRNAs correctly recognized by Triplet-SVM and 1913
out of 2529 sequences successfully detected by PMirP
classifier, which give accuracies of 74.4% and 75.6%,
respectively. In order to decrease the bias caused by the
redundancies, non-redundant sequences were employed
to evaluate the performance of three programs. Result
showed that 1315 out of 1638 sequences were correctly
recognized by Mirident classifier, which still kept the first
place with an accuracy rate of 80.3% higher than that in
Triplet-SVM (67.0%) and PMirP classifier (66.8%). And
of those successfully recognized precursors, only 835 pre-



35

Nucleotide content (%)

0 -—r-r-r—mw—sr-rr-r-rrererererererTr
& o 5980 & IgITFLEHFTLEF FTF LS ¥ & o §F @
F P T PLFET ST F I L FT LT Lo §FTS5FsSESF
Sy & v 3 G N S F S P T V&8 S P25 88
5§ 0 8§80 L S eI F 5T ST R P PE S
&SI 8 o0 55§ LS e oY TS T o
S T A P LT I TN S a8 fgidLPssF o 7. o
T T I T RS IS T oI I ST ESE Lol ofes
F v & £ F g5 &F g 9 9 & & §F L TS5 .S
PO S FLSF I F I S0 o o § < o §
s P & S EIFLFFIT ST XNELSFT g ¢ § & §
§F a8 § -\-tx?Qé”;,)o@_E}‘@@ FoF FFy
S T L 9o S Q9 9 Q F S
g ¥ 5 g Q& & 2
IS 4] Q P <
® &

Fig. 3. Change tendency of four nucleotides in 24 insect species.

miRNAs were jointly detected by the three programs,
accounting for about 51% prediction.

From global evaluation of the three programs, all of
them showed an obvious decline compared to the 2633
sequences. One possible reason for this was the fact that
995 highly similar sequences of the 24 insect species dis-
carded by the CD-hit procedure possessed a large share of
correctly detectable sequences. This being so, we also
predicted these sequences using the three programs. Our
results showed that 914 out of the 995 sequences were
successfully recognized by Mirident classifier with the
accuracy rate of 91.9%, still higher than that using
Triplet-SVM  (86.2%) and PMirP classifier (89.8%).
These data confirmed our assumption and further demon-
strated that these highly similar sequences shared similar
features with human stem loop structures (Table 1). In
addition, some pre-miRNA sequences detected using
Triplet-SVM and PMirP processing were deleted before
prediction, because of undesirable multiple loops
according to individual designing principle. Although
concerned with sequence structures, this data pretreat-
ment cause problems with subsequent results processing
compared to the Mirident classifier system. Nevertheless,
compared to previous tests on human precursor
sequences, Triplet SVM and PMirP classifier produced
mis-diagnoses in insects. Given that the test sequences
were composed of 24 insect species, a plausible interpre-
tation is that two of them primarily relied on the features
of human pre-miRNAs such as base-pair, full length and
MFE, etc. Unlike them, Mirident classifier seems to be
more suitable for predicting the pre-miRNA of insects.
According to the analysis of nucleotides preference, espe-

The X-axis represents 24 species, the Y-axis, nucleotide contents.

cially in Fig. 2A, a similar tendency in human and insects
pre-miRNAs is consistent with their initial designing con-
ception on ss-motif of variable length, without consid-
ering sequence-structure features of fixed size (Liu et al.,
2012).

In contrast, highly similar precursor sequences did not
mean that their microRNAs were also conserved; this is
because lots of microRNAs were almost identical while
their precursors differed. For more objective and accurate
evaluating of the three programs, 1597 stem-loop
sequences whose mature miRNAs were conserved in at
least two insect species were selected and predicted using
the three softwares. The results as shown in Table 1
revealed of 1597 sequences, 1521 were successfully rec-
ognized by Mirident classifier, with the accuracy rate
95.2%, still higher than that in triplet SVM (87.9%) and
PMirP classifer (89.7%). As compared with the above
performances in 995 high similar precursor sequences,
two datasets showed similar trends.

Collectively, the global performance comparison illus-
trated that different precursor features between human
and insect miRNAs must influence prediction perform-
ance. Perhaps, species differences in insects were the
main reason leading to the bad prediction performance
obtained. To illustrate this further studies were still
required in order to compare and analyze the diversity
across the 24 insect species.

Comparison and analysis across 24 species

As shown in Table 1, the accuracy rates for the 24
insect species were obtained and summarized according
to three prediction algorithms. Most recognized rates
reached >> 80%, except in the case of several species
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Fig. 4. Performance comparisons of three predictors through testing 24 insect species. The full lines represent the accuracy rates of
three predictors, while the dotted line stands for percentage of full length, MFEI and percentage of pre-miRNAs with MFEI higher
than 0.85 (PPM,ss ). The X-axis contains 24 insect species, which come from miRBase 18.0.

including B. mori, D. melanogaster, A. mellifera and T.
castaneum which are largely responsible for the bad per-
formance noted. This is especially so for 961 non-
redundant pre-miRNA precursors from these four species,
representing around 59% of 1638 non-redundant
sequences. After removing these from the global set, the
accuracy rates of the three test programs were individu-
ally raised to higher levels, which were closer to previous
human tests. Our results demonstrated that many non-
redundant stem-loop sequences in these four species
might well vary from those of other species in the sample
of 24 species. Consequently, nucleotides formations, full
length and MFE for 24 species were calculated in order to
analyze such potential differences. Fig. 3 illustrates that
four nucleotides in the 24 species have almost the same
change tendency. Nearly all the U nucleotides in these
species are in excess of other nucleotides, with the excep-
tion of the butterfly, Heliconius melpomene (L.) and the
locust, Locusta migratoria (L.). The contents of the four
nucleotides reached a minimum value in the aphid,
Acyrthosiphon pisum (Harris) and L. migratoria. Further-
more, the negative MFEs also fell to the lowest values
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noted (Table 1). This demonstrates that stem-loop struc-
ture feature of the two species is probably very different
from that of the other species in the collection. Moreover
and surprisingly, compared with full sequence length, the
accuracy rates of the three programs most likely
expressed opposite change tendencies (Fig. 4). This phe-
nomenon indicates that full sequence length might affect
the performance of the three chosen predictors.

Zhang and co-workers (Zhang et al., 2006) developed a
new term named minimum free energy index (MFEI) to
detect different types of RNA in plants. Their results
showed that when the MFEI was >> 0.85, the sequence
was most likely to be real miRNA. Using this concept, we
employed MFEI to disclose the differences across the
miRNAs of the 24 insect species tested. As shown in
Table 2, most species had average MFEIs >> 0.85, except
for five species, i.e. B. mori, D. melanogaster, D. simu-
lans (Sturtevant) A. mellifera, and H. melpomene. Inter-
estingly, three species — B. mori, D. melanogaster and A.
mellifera not only had lower MFEIs, but also accounted
for three quarters of the bad performance of species
noted. Accordingly, more than half of pre-miRNAs in 17



TaBLE 2. Nucleotide characteristics of 24 insect species.

Species A U G c (A;U) (GOZC) Full length MFE  MFEI
Bombyx mori 25.62+8.69 30.39+10.19 23.67+6.85 20.49+6.94 5591 44.09 100.17+21.61 -31.16+£10.23 0.73
Acyrthosiphon pisum 17.72£3.94 21.57+4.26 13.98+3.54 12.28+3.93 59.93 40.07 65.54+8.95 -24.65+6.26 0.97
Aedes aegypti 23.16£5.85 29.73£7.29 21.946.08 19.45+6.4 56.12 43.88 94.24+20.82 -35.31+8.15 0.87
Anopheles gambiae 23.1245.22 29.49+£5.73 22.49+4.46 20.12£6.3 5525 44.75 95.22+15.56 -37.47+£7.48 0.89
Apis mellifera 27.78+£9.32 31.05+9.51 25.25+7.14 20.68+6.48 56.15 43.85 104.75+18.64 —35.94+9.84 0.81
Culex quinquefasciatus 21.5445.37 27.67+£6.06 21.51+4.79 18.64+£5.57 55.07 44.93 89.36+15.63 —-34.25+7.51 0.87
Drosophila melanogaster — 24.22+7.7 29.43+7.45 21.18+£7.22 19.75£8.14 56.72 43.28 94.58+22.98 -33+10.99 0.83
Drosophila ananassae 21.8+4.87 26.97+4.27 18.95+4.3 16.88+4.24 57.65 4235 84.61+11.26 -32.01£5.83 0.91
Drosophila erecta 21.5244.93 27.3844.37 19.16+4.21 16.84+3.76 57.60 4240 84.9+11.41 -31.52+6.58 0.88
Drosophila grimshawi 21.734£5.31 27.93+4.48 18.38+4.09 15.78+4.04 59.25 40.75 83.82+11.65 -30.39+5.7 0.90
Drosophila mojavensis 21.51£5.11 28.144.72 18.73+4.32 16.13+4.19 58.73 41.27 84.46+11.95 -31.35+5.7 0.92
Drosophila persimilis 21.35+4.35 27.57+4.64 19.29+4.08 16.91+4.13 57.47 42.53 85.12+10.89 -32.16+5.5 0.90
Drosophila pseudoobscura 24.68+6.43 30.16+6.41 22.23+6.13 20.15+6.46 56.41 43.59 97.22+15.07 -35.54+10.37 0.85
Drosophila sechellia 21.73£5.01 27.36+4.39 18.94+4.21 16.78+3.87 57.88 42.12 84.81x11.75 -31.93+£6.52 0.90
Drosophila simulans 24.27+6.03  29.54+6 20.85+5.42 18.68+£5.6 57.66 42.34 93.33+16.15 -32.7+7.67 0.84
Drosophila virilis 21.26+5.27 28+4.63  18.77+4.31 16.39+4.33 5835 41.65 84.42+12.1 -31.11£6.33 0.90
Drosophila willistoni 22.53+4.91 29.14+5.8 17.96+3.74 15.83+£3.78 60.47 39.53 85.47+12.48 -30.75+5.95 0.92
Drosophila yakuba 21.744.9  27.75+4.49 19.05+4.11 16.7£3.8 58.04 41.96 852+11.11 -31.59+6.23 0.89
Heliconius melpomene 11.5€2.12 23.540.71 24.5+3.54 20+2.83 44.03 5597 79.5+2.12  -37.2+1.13 0.84
Locusta migratoria 15+1.73 18+3.21 15£1.15 12£3.06  55.00 45.00 60+1.63 —25.44+£2.37 0.95
Nasonia giraulti 19.9143.81 23.75+4.08 21.34+4.15 18.5+3.15 5229 47.71 83.548.56 —34.06+6.48 0.86
Nasonia longicornis 20+4.35  25.11+£3.98 21.2543.52 18.29+3.85 53.28 46.72 84.64+8.54 -34.02+4.79 0.87
Nasonia vitripennis 22.3+4.7  26.53+4.64 24.11+4.38 20.64+4.22 52.18 47.82 93.58+9.79 -39.42+5.71 0.89
Tribolium castaneum 24.6948.03 31.1949.33 21.23+6.82 17.62+5.34 59.00 41.00 94.73+21.5 -33.18+9.68 0.87

Note: Table 2 shows the average number of each term such as four nucleotides, C-G pair, A-U pair, full sequence length, minimum
free energy (MFE) and minimum free energy index (MFEI). The following “+ number” = individual standard deviation (STDV).

species had MFEIs >> 0.85, while only 21.6% miRNA
precursors did so in B. mori (Fig. 4). Considering the
curves shown in Fig. 4, PPMyss almost has the same
change tendency with performances of Triplet-SVM and
PMirP classifier. The result illustrates that the values of
MFEIs indeed influence the performance of the two pro-
grams. More importantly, the over-reliance on C-G con-
tent, full sequence length and MFE might be the main
reason leading to the poor accuracy rates of two algorisms
in some insect species. Lastly, compared with their report
(Zhang et al., 2006), more than 90% of pre-miRNAs had
an MFEI >> 0.85, but in our study, 71.4% for L. migra-
toria was the highest ratio observed (Fig. 4). This lack of
uniformity might arise due to differences between plants
and insects. Thus, MFEI might be a good, but not abso-
lute parameter, for detecting pre-miRNAs; however, the
average for total MFEIs could better serve as an impor-
tant index to describe pre-miRNA features of a given spe-
cies.

Despite stem-loop hairpin structure not being a unique
feature of miRNA, it is nevertheless still the most impor-
tant factor enabling definition of pre-miRNAs (Ambros et
al., 2003). Full sequence length and MFE reflect the most
immediate features of a pre-miRNA, while nucleotides
preference leads to diversity and specificity among spe-
cies. Based on the close relation between MFEI and the
performances of two programs, Triplet-SVM and PMirP
classifier, the lower MFEI appeared to be a key factor

leading to bad prediction performance in several insect
species tested. Perhaps the training models of the two
programs placed over-reliance on the features of human
pre-miRNAs. A more suitable and effective training
model based for insect is presently under consideration
and improvement. In the case of B. mori especially, this
becomes more interesting because of the poor perform-
ance (Fig. 4), lowest average MFEI (0.73) and smallest
PPMO0.85 (21.6%) according to the above analyses. On
the other hand, it cannot be ignored that potential error
might be caused by false positive pre-miRNAs in miR-
Base. As is well known, many such errors arise as a result
of computational methodology without extra experi-
mental confirmation and validation (Griffiths-Jones,
2004).

CONCLUSION

Taken as a whole, developments of deep sequencing
and bioinformatics have greatly boosted research into
miRNAs. Butas found by us, one important step is clearly
the selection of s more suitable tools to distinguish real
miRNAs from pseudo ones. Given the performance of
Mirident classifier in predicting pre-miRNAs, general
sequence features such as ss-motifs should be taken as
important factors to construct new tools or algorithms for
pre-miRNA prediction. Furthermore, based on the fea-
tures understanding of known pre-miRNA sequences of
insects, a better and more specific training model is still
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required for future studies. For those insect species whose
genomes are presently unknown, such bioinformatics
algorithms may play important roles in discovering many
more useful miRNAs.
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