Do resistant plants provide an enemy-free space to aphids?

BRUNO FRÉCHETTE1,2, CHARLES VINCENT2*, PHILIPPE GIORDANENGO3, YVAN PELLETIER4 and ÉRIC LUCAS1

1Université du Québec à Montréal, Département des sciences biologiques, C.P. 8888, Succ. Centre-Ville, Montréal, Qc, H3C 3P8, Canada
2Centre de Recherche et de Développement en Horticulture, Agriculture et Agro-alimentaire Canada, 430 Boul. Gouin, Saint-Jean-sur-Richelieu, Qc, J3B 3E6, Canada
3Université de Picardie Jules Verne, Biologie des Plantes et Contrôle des Insectes Ravageurs, 33 rue St Leu, 80039 Amiens cedex 1, France
4Potato Research Centre, Agriculture and Agri-Food Canada, P.O. Box 20280, Fredericton, New Brunswick, E3B 4Z7, Canada

Key words. Resistant plants, aphids, Coccinellidae, Harmonia axyridis, Coleomegilla maculata, enemy-free space, wild Solanum species, Solanum tarijense

Abstract. An experiment was conducted to compare the predation efficiency of the coccinellids Harmonia axyridis and Coleomegilla maculata on potato plants, Solanum tuberosum, and on a wild aphid-resistant species, Solanum tarijense. Harmonia axyridis females reduced aphid populations more than C. maculata females. Aphid predation by the predators was reduced on S. tarijense compared to S. tuberosum. Coleomegilla maculata spent less time on S. tarijense than on S. tuberosum. Harmonia axyridis spent the same amount of time on both plant species. The plant species did not affect IGP between larvae. Compared to S. tuberosum, the resistant plant offers M. persicae an enemy-free space against both coccinellid predators.

INTRODUCTION

The development of resistant plants is a management strategy that has received much attention in recent years (Le Roux et al., 2008a). Plant resistance may be based on chemical or physical characteristics that alter host-plant colonization behavior of the pest (antixenosis) or its demographic parameters (antibiosis) (Le Roux et al., 2007, 2008b). Many wild Solanum species are considered for hybridization with the commercial potato Solanum tuberosum L., based on their resistance to pests (Flanders et al., 1992; Bamberg et al., 1996), and diseases (Douches et al., 2001; Chen et al., 2003). However, plant resistance may also have an impact on the third trophic level, i.e., the predators and the parasi-toids of the pest (Orr & Boethel, 1986; Obrzycki, 1986). For example, the foraging abilities of many insect predators are hindered by glandular trichomes (Obrzycki & Tauber, 1984; Lucas et al., 2004).

Many species contribute to aphid biocontrol (Obrzycki et al., 1983; Karley et al., 2003; Koss & Snyder, 2005), and their exclusion from resistant plants could provide an enemy-free space to aphids adapted to resistant plants. The aim of this study was to evaluate the impact of an aphid-resistant plant on the behavior of two aphid predators. We studied the predation and oviposition behavior of adults of two common coccinellids of potato fields, i.e. the multi-spotted Asian ladybeetle Harmonia axyridis Pallas and the twelve-spotted ladybeetle Coleomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae), on a susceptible commercial potato plant and on an aphid-resistant wild species, Solanum tarijense Hawkes (Alvarez et al., 2006). Solanum tarijense plants have type A glandular trichomes that secrete sticky exudates. In a field study S. tarijense PI 414150 has been shown to be more resistant to M. persicae than other wild Solanum and S. tuberosum (Fréchette et al., 2010). We also compared the residence time of H. axyridis and C. maculata larvae on S. tuberosum and S. tarijense plants, as well as the occurrence of intraguild predation (IGP) between larvae as a response to host-plant species. IGP can have an impact on predators dynamics and thus possibly on herbivores populations dynamics.

MATERIAL AND METHODS

Biological material

Harmonia axyridis and C. maculata stock cultures were established from individuals collected in fields of Southwestern Quebec, Canada. Adults and larvae were reared in plastic boxes and fed with an excess of laboratory-reared green peach aphids, Myzus persicae (Sulzer). Plants were grown in a glasshouse from S. tuberosum cv. Désirée tubers and S. tarijense PI 414150 seeds. Insects were reared at 19°C, 16L : 8D.

Predation and oviposition

Plants (= 14 cm height) were standardized to have 5–7 fully expanded leaves and were isolated in Plexiglas® cages (30 × 30 × 30 cm). Twenty aphids (immature and apterous adults mixed) were gently transferred with a fine hair brush to each plant. Either two C. maculata or two H. axyridis adult females older than one week were placed in each cage. Coccinellid females were removed from the plants 22 h later, and both cages and plants were thoroughly examined to count coccinellid eggs and the number of aphids remaining on each plant. Each plant was used twice (one time with C. maculata and one time with H. axyridis), and each coccinellid female was tested twice (one time with S. tuberosum and one time with S. tarijense). Half of the plants of a given species were randomly assigned to receive C. maculata females first, while the other half received H. axyridis first. Each combination was replicated 12 times.

* Corresponding author: charles.vincent@agr.gc.ca

NOTE

ISSN 1210-5759 (print), 1802-8829 (online)
Intraguild predation and residence time

One 4th instar *H. axyridis* larva and one 3rd instar *C. maculata* larva were placed on a different leaf of the same plant. *Harmonia axyridis* larvae older (and thus larger) than *C. maculata* larvae were used in order to maximize IGP probability. Plants (= 18 cm height) were standardized to six fully expanded leaves. Five apterous aphids were gently transferred with a fine hair brush onto each plant. Larvae were then observed for 90 min: IGP occurrence, the residence time of larvae on plants, and the way in which the larvae left (falling down or walking away from the plant) were noted. Twelve replications were made on *S. tarijense*, while 11 replications were made on *S. tuberosum*.

Statistical analysis

The number of aphids remaining on plants were first compared with an ANOVA with plant sequence as an independent variable. As there was no significant difference (F = 0.00035; d.f. = 1.46; P = 0.985) between plant sequences, the data was further analyzed with a 2-way ANOVA (plant species and coc-cinellid species). The proportion of cages where coc-cinellid eggs were found, the proportion of replicates where IGP occurred and the proportion of coc-cinellid larvae residence times of less than 30 min were compared between *S. tuberosum* and *S. tarijense* with a Likelihood ratio test.

RESULTS

Predation and oviposition

The number of aphids remaining on plants differed significantly between plant species (F = 5.92; d.f. = 1.44; P = 0.019) and between coccinellid species (F = 19.58; d.f. = 1.44; P < 0.0001), with no interaction between factors (F = 0.45; d.f. = 1; P = 0.51). There were significantly more aphids remaining on *S. tarijense* than on *S. tuberosum*, and more aphids remaining in the presence of *C. maculata* adults than in the presence of *H. axyridis* adults (Fig. 1).

Coleomegilla maculata eggs were observed only in 2 of 24 experimental cages. *Harmonia axyridis* eggs were found in 16 of 24 experimental cages with statistically similar distributions between *S. tuberosum* and *S. tarijense* (Likelihood Ratio; $\chi^2 = 0.76$; d.f. = 1; P = 0.38). All eggs were laid on the walls of the cages.

Intraguild predation and residence time

Coleomegilla maculata larvae remained significantly longer on *S. tuberosum* than on *S. tarijense* (Likelihood ratio; $\chi^2 = 4.02$; d.f. = 1; P = 0.045). All *C. maculata* larvae left *S. tuberosum* plants by crawling, while 66.7% left *S. tarijense* plants by falling down. *Harmonia axyridis* larvae residence time was not affected by plant species (Likelihood ratio; $\chi^2 = 0.38$; d.f. = 1; P = 0.54). All *H. axyridis* larvae that left the plants did so by crawling. IGP occurred only in one replicate of each plant species and, in both cases, *H. axyridis* larvae preyed upon *C. maculata* larvae.

DISCUSSION

The behavior of the two aphid predators was altered on the aphid-resistant *S. tarijense*. *Coleomegilla maculata* larvae left *S. tarijense* earlier than *S. tuberosum*. Moreover, *C. maculata* and *H. axyridis* adults ate fewer aphids on the aphid-resistant *S. tarijense* than on the susceptible *S. tuberosum*. The possibility that aphids or their natural enemies may become adapted to *Solanum* spp. glandular trichomes is unknown, but previous studies have demonstrated that the Colorado potato beetle may adapt to trichome-bearing plant species (Pelletier & Smilowitz, 1991). Should aphid-resistant plants bearing trichomes be used in the field, an enemy-free space would be provided for trichome-adapted aphids until their natural enemies become likewise adapted.

ACKNOWLEDGEMENTS. This research was co-funded by Cavendish Farm, Ferme Michel Auger and Agriculture and Agri-Food Canada under the MII program, and by the Comité Nord Plants de Pomme de Terre, France. *Solanum tarijense* seeds were graciously provided by the USDA Potato Germplasm Introduction Station at Sturgeon Bay, Wisconsin, USA. We thank P. Lemoyne for technical input.

REFERENCES

Received May 6, 2011; revised and accepted October 13, 2011.