Eur. J. Entomol. 122: 119-136, 2025 | DOI: 10.14411/eje.2025.015

Differential gene expression reprogramming in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae) triggered by an SKTI-derivative tripeptide protease inhibitor compared to the natural SKTI proteinOriginal article

Eulálio GUTEMBERG DIAS DOS SANTOS1, Neilier RODRIGUES DA SILVA JÚNIOR1, Marco Aurélio FERREIRA3, Ian DE PAULA ALVES PINTO1, Monique DA SILVA BONJOUR1, Pedro Marcus PEREIRA VIDIGAL2, Elizabeth Pacheco BATISTA FONTES1, Maria Goreti ALMEIDA OLIVEIRA1, Humberto Josué OLIVEIRA RAMOS ORCID...1, 2, *
1 Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa-MG, Brazil; e-mails: eulaliobqi@gmail.com, neilierjunior@gmail.com, ian.pinto@ufv.br, monique.bonjour@ufv.br, bbfontes@ufv.br, mgoalmeida@gmail.com, humramos@ufv.br
2 Núcleo de Análise de Biomoléculas, NuBioMol, Universidade Federal de Viçosa, Viçosa-MG, Brazil; e-mail: pedro.vidigal@ufv.br
3 Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa-MG, Brazil; e-mail: marco.aurelioferreira@hotmail.com

The velvetbean caterpillar, Anticarsia gemmatalis, is one of the major insect pests causing defoliation in soybean crops. Alternative strategies have been explored to reduce insect damage, including the use of protease inhibitors (PIs) that act as anti-nutritional factors. The tripeptide GORE-2, designed based on the soybean SKTI PI, exhibits enhanced protease inhibitory activity and reduces caterpillar survival. To investigate the molecular response to these PIs, we analyzed gene expression profiles using RNA-Seq. Both SKTI and GORE-2 induced extensive transcriptional reprogramming in the midgut after 24 h of exposure. The response patterns were generally similar, with changes in the expression of genes encoding digestive proteases and defense-related proteins, particularly those involved in peritrophic matrix protection and regeneration. However, SKTI elicited a more robust activation of defense signaling pathways, suggesting a stronger ability to trigger protective responses. This may explain the greater efficacy of GORE-2 in inhibiting proteolysis and reducing caterpillar survival potentially involving both amino acid starvation signaling and broader perception mechanisms developed to detect soybean-derived deterrents. As a mimetic tripeptide, GORE-2 may engage these pathways less efficiently. Notably, genes associated with detoxification and oxidative stress were more highly expressed in response to GORE-2, highlighting an additional advantage of using synthetic or mimetic protease inhibitors.

Keywords: Plant defense, insect-plant interaction, transcriptome analysis, midgut, peritrophic matrix

Received: February 3, 2025; Revised: June 2, 2025; Accepted: June 2, 2025; Published online: July 2, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GUTEMBERG DIAS DOS SANTOS, E., RODRIGUES DA SILVA JÚNIOR, N., FERREIRA, M.A., DE PAULA ALVES PINTO, I., DA SILVA BONJOUR, M., PEREIRA VIDIGAL, P.M., ... OLIVEIRA RAMOS, H.J. (2025). Differential gene expression reprogramming in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae) triggered by an SKTI-derivative tripeptide protease inhibitor compared to the natural SKTI protein. EJE122, Article 119-136. https://doi.org/10.14411/eje.2025.015
Download citation

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990: Basic local alignment search tool. - J. Mol. Biol. 215: 403-410. Go to original source...
  2. Alvarenga E.S.L., Mansur J.F., Justi S.A., Figueira-Mansur J., dos Santos V.M., Lopez S.G., Masuda H., Lara F.A., Melo A.C.A. & Moreira M.F. 2016: Chitin is a component of the Rhodnius prolixus midgut. - Insect Biochem. Mol. Biol. 69: 61-70. Go to original source...
  3. Andrews S. 2010: FastQC - A Quality Control Tool for High Throughput Sequence Data. URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.BabrahamBioinformatics.
  4. Barros R.A., Meriño-Cabrera Y., Castro J.S., Silva Junior N.R., Oliveira J.V.A., Schultz H., Andrade R.J., Ramos H.J. & Oliveira M.G.A. 2022: Bovine pancreatic trypsin inhibitor and soybean Kunitz trypsin inhibitor: Differential effects on proteases and larval development of the soybean pest Anticarsia gemmatalis (Lepidoptera: Noctuidae). - Pestic. Biochem. Physiol. 187: 105188, 12 pp. Go to original source...
  5. Bel Y., Zack M., Narva K., Escriche B. 2019: Specific binding of Bacillus thuringiensis cry1ea toxin, and cry1ac and Cry1Fa competition analyses in Anticarsia gemmatalis and Chrysodeixis includens. - Sci. Rep. 9: 18201, 7 pp. Go to original source...
  6. Boaventura D., Bolzan A., Padovez F.E., Okuma D.M., Omoto C. & Nauen R. 2020: Detection of a mutation associated with pyrethroid resistance in the soybean looper, Chrysodeixis includens, and its spread in Brazilian populations. - Pest Manag. Sci. 76: 943-950. Go to original source...
  7. Bolger A.M., Lohse M. & Usadel B. 2014: Trimmomatic: A flexible trimmer for Illumina sequence data. - Bioinformatics 30: 2114-2120. Go to original source...
  8. Bray N.L. Pimentel H., Melsted P. & Pachter L. 2016: Near-optimal probabilistic RNA-seq quantification. - Nature Biotechnol. 34: 525-527. Go to original source...
  9. Brioschi D., Nadalini L.D., Bengtson M.H., Sogayar M.C., Moura D.S. & Silva-Filho M.C. 2007: General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. - Insect Biochem. Mol. Biol. 37: 1283-1290. Go to original source...
  10. Broadway R.M. 1997: Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. - J. Insect Physiol. 43: 855-874. Go to original source...
  11. Campos E.V.R., Proença P.L.F., Oliveira J.L., Bakshi M., Abhilash P.C. & Fraceto L.F. 2019: Use of botanical insecticides for sustainable agriculture: Future perspectives. - Ecol. Indicators 105: 483-495. Go to original source...
  12. Conesa A., Götz S., García-Gómez J.M., Terol J., Talón M. & Robles M. 2005: Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. - Bioinformatics 21: 3674-3676. Go to original source...
  13. Coura R.R., da Silva Junior N.R., Meriño-Cabrera Y., Díez J.D.R., Barros R.A., Barbosa S.L., de Oliveira J.V.A., da Rocha G.C., Serrão J.E., de Oliveira Ramos H.J. & de Almeida Oliveira M.G. 2022: Extensive reprogramming of protein isoforms and histopathological alterations in the midgut of Anticarsia gemmatalis fed with protease inhibitors. - Ann. Appl. Biol. 180: 383-397. Go to original source...
  14. da Silva Fortunato F., de Almeida Oliveira M.G., Brumano M.H.N., Silva C.H.O., Guedes R.N.C., Moreira M.A. 2007: Lipoxygenase-induced defense of soybean varieties to the attack of the velvetbean caterpillar (Anticarsia gemmatalis Hübner). - J. Pest Sci. 80: 241-247. Go to original source...
  15. da Silva-Júnior N.R., Vital C.E., de Almeida Barros R., de Oliveira E.E., de Oliveira Ramos H.J. & de Almeida Oliveira M.G. 2020: Intestinal proteolytic profile changes during larval development of Anticarsia gemmatalis caterpillars. - Arch. Insect Biochem. Physiol. 103: e21631, 14 pp. Go to original source...
  16. Dhania N.K., Chauhan V.K., Chaitanya R.K. & Dutta-Gupta A. 2019: Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation. - Comp. Biochem. Physiol. (D) 30: 81-90. Go to original source...
  17. Eddy S.R. & Wheeler T.J. 2015: HMMER 3.1.2b. URL: http://hmmer.org/.
  18. Ewels P., Magnusson M., Lundin S. & Käller M. 2016: MultiQC: Summarize analysis results for multiple tools and samples in a single report. - Bioinformatics 32: 3047-3048. Go to original source...
  19. Fang S., Wang L., Guo W., Zhang X., Peng D., Luo C., Yu Z. & Sun M. 2009: Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. - Appl. Environ. Microbiol. 75: 5237-5243. Go to original source...
  20. Fernandes F.O., Abreu J.Á. de, Christ L.M. & Rosa A.P.S.A. da 2018: Insecticides management used in soybean for the control of Anticarsia gemmatalis (Hübner, 1818) (Lepidoptera: Eribidae). - J. Agric. Sci. 10: 223-230. Go to original source...
  21. Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., Sonnhammer E.L.L., Tate J. & Punta M. 2014: Pfam: The protein families database. - Nucl. Acids Res. 42: D222-D230. Go to original source...
  22. Fu L., Niu B., Zhu Z., Wu S. & Li W. 2012: CD-HIT: Accelerated for clustering the next-generation sequencing data. - Bioinformatics 28: 3150-3152. Go to original source...
  23. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K. … Regev A. 2011: Full-length transcriptome assembly from RNA-Seq data without a reference genome. - Nature Biotechnol. 29: 644-652. Go to original source...
  24. Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., Macmanes M.D., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey C.N. … Regev A. 2013: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. - Nature Protocols 8: 1494-1512. Go to original source...
  25. Huerta-Cepas J., Szklarczyk D., Forslund K., Cook H., Heller D., Walter M.C., Rattei T., Mende D.R., Sunagawa S., Kuhn M. et al. 2016: eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. - Nucl. Acids Res. 44: D286-D293. Go to original source...
  26. Huerta-Cepas J., Forslund K., Coelho L.P., Szklarczyk D., Jensen L.J., von Mering C. & Bork P. 2017: Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. - Mol. Biol. Evol. 34: 2115-2122. Go to original source...
  27. Krueger F. 2021: TrimGalore. URL: https://Github.Com/FelixKrueger/TrimGalore#readme.
  28. Kuwar S.S., Pauchet Y., Vogel H. & Heckel D.G. 2015: Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. - Insect Biochem. Mol. Biol. 59: 18-29. Go to original source...
  29. Langmead B. & Salzberg S.L. 2012: Fast gapped-read alignment with Bowtie 2. - Nature Meth. 9: 357-359. Go to original source...
  30. Li H.M., Sun L., Mittapalli O., Muir W.M., Xie J., Wu J., Schemerhorn B.J., Sun W., Pittendrigh B.R. & Murdock L.L. 2009: Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut. - Insect Mol. Biol. 18: 21-23. Go to original source...
  31. Lima B.S.A., Rocha F.A.D., Plata-Rueda A., Zanuncio J.C., Cossolin J.F.S., Martínez L.C. & Serrão J.E. 2024: Abamectin induces mortality, inhibits food consumption, and causes histological changes in the midgut of the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). - J. Pest Sci. 97: 213-227. Go to original source...
  32. Lin H., Lin X., Zhu J., Yu X.Q., Xia X., Yao F., Yang G. & You M. 2017: Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). - BMC Genomics 18: 162, 13 pp. Go to original source...
  33. Liu Y., Salzman R.A., Pankiw T. & Zhu-Salzman K. 2004: Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N. - Insect Biochem. Mol. Biol. 34: 1069-1077. Go to original source...
  34. Lomate P.R. & Hivrale V.K. 2011: Differential responses of midgut soluble aminopeptidases of Helicoverpa armigera to feeding on various host and non-host plant diets. - Arthr.-Plant Interact. 5: 359-368. Go to original source...
  35. Lomate P.R., Dewangan V., Mahajan N.S., Kumar Y., Kulkarni A., Wang L., Saxena S., Gupta V.S. & Giri A.P. 2018: Integrated transcriptomic and proteomic analyses suggest the participation of endogenous protease inhibitors in the regulation of protease gene expression in Helicoverpa armigera. - Mol. Cell. Proteomics 17: 1324-1336. Go to original source...
  36. Love M.I., Huber W. & Anders S. 2014: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. - Genome Biol. 15: 550, 21 pp. Go to original source...
  37. Mahanta D.K., Komal J., Samal I., Bhoi T.K., Kumar P.V.D., Mohapatra S., Athulya R., Majhi P.K. & Mastinu A. 2025: Plant defense responses to insect herbivores through molecular signaling, secondary metabolites, and associated epigenetic regulation. - Plant-Environ. Interact. 6: e70035, 18 pp. Go to original source...
  38. Mendonça E.G., de Almeida Barros R., Cordeiro G., da Silva C.R., Campos W.G., de Oliveira J.A. & de Almeida Oliveira M.G. 2020: Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. - Arch. Insect Biochem. Physiol. 103: e21637, 9 pp. Go to original source...
  39. Meriño-Cabrera Y., Zanuncio J.C., Silva R.S., Solis-Vargas M., Cordeiro G., Ribeiro F.R., Campos W.G., Picanço M.C. & Oliveira M.G.A. 2018: Biochemical response between insects and plants: an investigation of enzyme activity in the digestive system of Leucoptera coffeella (Lepidoptera: Lyonetiidae) and leaves of Coffea arabica (Rubiaceae) after herbivory. - Ann. Appl. Biol. 172: 236-243. Go to original source...
  40. Meriño-Cabrera Y., Castro J.S., Barros R.A., Silva Junior N.R., Ramos H.J. & Oliveira M.G.A. 2022: Arginine-containing dipeptides decrease affinity of gut trypsins and compromise soybean pest development. - Pestic. Biochem. Physiol. 187: 105107, 10 pp. Go to original source...
  41. Mohan S., Ma P.W.K., Pechan T., Bassford E.R., Williams W.P. & Luthe D.S. 2006: Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. - J. Insect Physiol. 52: 21-28. Go to original source...
  42. Muthukrishnan S., Merzendorfer H., Arakane Y. & Yang Q. 2019: Chitin organizing and modifying enzymes and proteins involved in remodeling of the insect cuticle. In Yang Q. & Fukamizo T. (eds): Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, Vol. 1142. Springer, Singapore, pp. 83-114. Go to original source...
  43. Napoleão T.H., Albuquerque L.P., Santos N.D., Nova I.C., Lima T.A., Paiva P.M. & Pontual E.V. 2019: Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. - Pest Manag. Sci. 75: 1212-1222. Go to original source...
  44. Nascimento A.R.B., do Fresia P., Cônsoli F.L. & Omoto C. 2015: Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepido­ptera: Noctuidae). - BMC Genomics 16: 985: 12 pp. Go to original source...
  45. Pezenti L.F., Sosa-Gómez D.R., de Souza R.F., Vilas-Boas L.A., Gonçalves K.B., da Silva C.R.M., Vilas-Bôas G.T., Baranoski A., Mantovani M.S. & da Rosa R. 2021: Transcriptional profiling analysis of susceptible and resistant strains of Anticarsia gemmatalis and their response to Bacillus thuringiensis. - Genomics 113: 2264-2275. Go to original source...
  46. Plata-Rueda A., de Menezes C.H.M., Cunha W.D., Alvarenga T.M., Barbosa B.F., Zanuncio J.C. & Serrão J.E. 2020: Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). - Chemosphere 259: 127530, 7 pp. Go to original source...
  47. Ponnuvel P., Narayanankutty K., Jalaludeen A. & Anitha P. 2015: Effect of phytase supplementation in low energy-protein diet on the production performance of layer chicken. - Int. J. Vet. Sci. Biotechnol. 3: 25-27.
  48. Qu J., Jin Y., Wu J. & Meng Y. 2022: Challenges and prospects of bioinsecticides in sustainable pest management. - Front. Agric. Sci. Engin. 9: 108-120. Go to original source...
  49. Roy D., Moughan P.J., Ye A., Hodgkinson S.M., Stroebinger N., Li S., Dave A.C., Montoya C.A. & Singh H. 2022: Structural changes in milk from different species during gastric digestion in piglets. - J. Dairy Sci. 105: 3810-3831. Go to original source...
  50. Schurch N.J., Schofield P., Gierliñski M., Cole C., Sherstnev A., Singh V., Wrobel N., Gharbi K., Simpson G.G., Owen-Hughes T., Blaxter M. & Barton G.J. 2016: How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? - RNA 22: 839-851. Go to original source...
  51. Shakeel M. & Zafar J. 2020: Molecular identification, characterization, and expression analysis of a novel trypsin inhibitor-like cysteine-rich peptide from the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). - Egypt. J. Biol. Pest Contr. 30: 10, 7 pp. Go to original source...
  52. Silva-Júnior N.R., Cabrera Y.M., Barbosa S.L., Barros R. de A., Barros E., Vital C.E., Ramos H.J.O. & Oliveira M.G.A. 2021: Intestinal proteases profiling from Anticarsia gemmatalis and their binding to inhibitors. - Arch. Insect Biochem. Physiol. 107: e21792, 28 pp. Go to original source...
  53. Song L. & Florea L. 2015: Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. - GigaScience 4: 48, 8 pp. Go to original source...
  54. Song X., An J., Zhou Z., Li Z., Wang X., Wang Y. & Wang S. 2025: Gut bacterial components modulate Per1 expression and peritrophic matrix structure in Anopheles stephensi. - PLoS Pathog. 21: e1010843, 26 pp.
  55. Souza T.P., Dias R.O., Castelhano E.C., Brandão M.M., Moura D.S. & Silva-Filho M.C. 2016: Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors. - Comp. Biochem. Physiol. (B) 196-197: 67-73. Go to original source...
  56. Stark R., Grzelak M. & Hadfield J. 2019: RNA sequencing: the teenage years. - Nat. Rev. Genet. 20: 631-656. Go to original source...
  57. Terra W.T. & Ferreira C. 2012: Biochemistry and molecular biology of digestion. In Gilbert L.I. (ed.): Insect Molecular Biology and Biochemistry. Elsevier Academic Press, Amsterdam, pp. 365-418. Go to original source...
  58. Terra X., Montagut G., Bustos M., Llopiz N., Ardèvol A., Bladé C., Fernández-Larrea J., Pujadas G., Salvadó J., Arola L. & Blay M. 2009: Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. - J. Nutr. Biochem. 20: 210-218. Go to original source...
  59. Toprak U., Baldwin D., Erlandson M., Gillottt C. & Hegedus D.D. 2010: Insect intestinal mucins and serine proteases associated with the peritrophic matrix from feeding, starved and moulting Mamestra configurata larvae. - Insect Mol. Biol. 19: 163-175. Go to original source...
  60. Toprak U., Erlandson M., Baldwin D., Karcz S., Wan L., Coutu C., Gillott C. & Hegedus D.D. 2015: Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. - Insect Sci. 23: 656-674. Go to original source...
  61. van Bel M., Proost S., van Neste C., Deforce D., van de Peer Y. & Vandepoele K. 2013: TRAPID: An efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. - Genome Biology 14: R134, 10 pp. Go to original source...
  62. Visotto L.E., Oliveira M.G., Ribon A.O., Mares-Guia T.R. & Guedes R.N. 2009: Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). - Environ. Entomol. 38: 1078-1085. Go to original source...
  63. Wang J., Germinara G.S., Feng Z., Luo S., Yang S., Xu S., Li C. & Cao Y. 2022: Comparative effects of heat and cold stress on physiological enzymes in Sitophilus oryzae and Lasioderma serricorne. - J. Stored Prod. Res. 96: 101948, 8 pp. Go to original source...
  64. Wang H., Chen Z., Luo R., Lei C., Zhang M., Gao A., Pu J. & Zhang H. 2024: Caffeic acid O-methyltransferase gene family in mango (Mangifera indica L.) with transcriptional analysis under biotic and abiotic stresses and the role of MiCOMT1 in salt tolerance. - Int. J. Mol. Sci. 25: 2639, 18 pp. Go to original source...
  65. Xie C., Mao X., Huang J., Ding Y., Wu J., Dong S., Kong L., Gao G., Li C.Y. & Wei L. 2011: KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. - Nucl. Acids Res. (Suppl. 2) 39: W316-W322. Go to original source...
  66. Zhang Y.-J., Feng M.-G., Fan Y.-H., Luo Z.-B., Yang X.-Y., Wu D. & Pei Y. 2008: A cuticle-degrading protease (CDEP-1) of Beauveria bassiana enhances virulence. - Biocontr. Sci. Technol. 18: 551-563. Go to original source...
  67. Zhao A., Li Y., Leng C., Wang P. & Li Y. 2019: Inhibitory effect of protease inhibitors on larval midgut protease activities and the performance of Plutella xylostella (Lepidoptera: Plutellidae). - Front. Physiol. 9: 1963, 9 pp. Go to original source...
  68. Zhu-Salzman K. & Zeng R. 2015: Insect response to plant defensive protease inhibitors. - Annu. Rev. Entomol. 60: 233-252. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.