Eur. J. Entomol. 122: 99-110, 2025 | DOI: 10.14411/eje.2025.012

Impact of climate change on the potential distributions of two cicada species, Platypleura octoguttata and Lemuriana apicalis (Hemiptera: Cicadidae), in India and their conservation implicationsOriginal article

Babu SADDAM ORCID..., Cong WEI ORCID...*
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; e-mails: bsmalik.malik@gmail.com, congwei@nwsuaf.edu.cn

The loss of habitat for numerous organisms due to climate change has significantly accelerated the rate of species extinction. Unfortunately, there have been no studies conducted on the impact of climate change and other factors on the distribution patterns of cicada species in India. In the present study, we investigated the current and potential future distribution of two cicada species, Platypleura octoguttata and Lemuriana apicalis, using environmental variables and occurrence data through maximum entropy modelling. The distribution ranges of both species show some similarities under the current climatic conditions. According to predictions based on future climate scenarios, the distribution areas for P. octoguttata and L. apicalis are predicted to decrease to varying extents. However, the anticipated reduction of distribution areas for these two cicada species is different, indicating that both species have distinct responses to climate change. The changes in the distributional centroids show a consistent trend of moving in a north-westward direction across all future periods under the four climate scenarios (SSP126, SSP264, SSP370, and SSP585), except for SSP370 in the case of L. apicalis, which shows the direction of overall migration north-eastwards over time. The creation of a new protected area at the border of Bijnor District in Uttar Pradesh Province and Haridwar District in Uttarakhand Province would be greatly helpful in future for the conservation of these two species. Our findings highlight the impact of climate change on the distribution range of these two cicada species, offering valuable insights for conservation efforts in India.

Keywords: Environmental variables, habitat change, distribution range, maximum entropy modelling

Received: July 9, 2024; Revised: March 12, 2025; Accepted: March 12, 2025; Published online: May 12, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SADDAM, B., & WEI, C. (2025). Impact of climate change on the potential distributions of two cicada species, Platypleura octoguttata and Lemuriana apicalis (Hemiptera: Cicadidae), in India and their conservation implications. EJE122, Article 99-110. https://doi.org/10.14411/eje.2025.012
Download citation

References

  1. Aidoo O.F., Souza P.G.C., Siqueira da Silva R., Santana P.A. Jr, Picanço M.C., Kyerematen R., Setamou M., Ekesi S. & Borgemeister C. 2022: Predicting the potential global distribution of an invasive alien pest Trioza erytreae (Del Guercio) (Hemiptera: Triozidae). - Sci. Rep. 12: 20312, 14 pp. Go to original source...
  2. Bajwa A.A., Farooq M., Al-Sadi A.M., Nawaz A., Jabran K., & Siddique K.H.M 2020: Impact of climate change on biology and management of wheat pests. - Crop Prot. 137: 105304, 7 pp. Go to original source...
  3. Beaury E.M., Fusco E.J., Jackson M.R., Laginhas B.B., Morelli T.L., Allen J.M., Pasquarella V.J. & Bradley B.A. 2020: Incorporating climate change into invasive species management: insights from managers. - Biol. Invas. 22: 233-252. Go to original source...
  4. Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. 2012: Impacts of climate change on the future of biodiversity. - Ecol. Lett. 15: 365-377. Go to original source...
  5. Brown J.L. 2014: SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. - Meth. Ecol. Evol. 5: 694-700. Go to original source...
  6. Burlakova L.E., Karatayev A.Y., Karatayev V.A., May M.E., Bennett D.L. & Cook M.J. 2011: Endemic species: contribution to community uniqueness, effect of habitat alteration, and conservation priorities. - Biol. Conserv. 144: 155-165. Go to original source...
  7. Chi Y., Wang G.G., Zhu M., Jin P., Hu Y., Shu P., Wang Z., Fan A., Qian P., Han Y. & Jin S. 2023: Potentially suitable habitat prediction of Pinus massoniana Lamb. in China under climate change using Maxent model. - Front. For. Glob. Change 6: 1144401, 14 pp. Go to original source...
  8. Coope G.R. 1994: The response of insect faunas to glacial-interglacial climatic fluctuations. - Philos. Trans. R. Soc. Lond. (B, Biol. Sci.) 344: 19-26. Go to original source...
  9. Dahlhoff E.P., Dahlhoff V.C., Grainger C.A., Zavala N.A., Otepola-Bello D., Sargent B.A., Roberts K.T., Heidl S.J., Smiley J.T. & Rank N.E. 2019: Getting chased up the mountain: High elevation may limit performance and fitness characters in a montane insect. - Funct. Ecol. 33: 809-818. Go to original source...
  10. Distant W.L. 1906: Rhynchota. Heteroptera-Homoptera. In Bingham C.T. (ed.): The Fauna of British India, including Ceylon and Burma. Taylor and Francis, London. i-xiv, pp. 1-503.
  11. Elith J., Graham C.H, Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A. et al. 2006: Novel methods improve prediction of species distributions from occurrence data. - Ecography 29: 129-151. Go to original source...
  12. Fick S.E. & Hijmans R.J. 2017: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. - Int. J. Climatol. 37: 4302-4315. Go to original source...
  13. Giri V.B., Chaitanya R., Mahony S., Lalrounga S., Lalrinchhana C., Das A., Sarkar V., Karanth P. & Deepak V. 2019: On the systematic status of the genus Oriocalotes Günther, 1864 (Squamata: Agamidae: Draconinae) with the description of a new species from Mizoram state, Northeast India. - Zootaxa 4638: 451-484. Go to original source...
  14. Hajong S.R. & Yaakop S. 2013: Chremistica ribhoi sp. n. (Hemiptera: Cicadidae) from North-East India and its mass emergence. - Zootaxa 3702: 493-500. Go to original source...
  15. Hamann E., Blevins C., Franks S.J., Jameel M.I. & Anderson J.T. 2021: Climate change alters plant-herbivore interactions. - New Phytol. 229: 1894-1910. Go to original source...
  16. Hodkinson T.R., Jones M.B., Waldren S. & Parnell J.A. (eds) 2011: Climate Change, Ecology and Systematics (Vol. 78). Cambridge University Press, Cambridge, 544 pp. Go to original source...
  17. Karban R. 1983: Sexual selection, body size and sex-related mortality in the cicada Magicicada cassini. - Am. Mid. Nat. 324-330. Go to original source...
  18. Kellermann V. & Van Heerwaarden B. 2019: Terrestrial insects and climate change: adaptive responses in key traits. - Physiol. Entomol. 44: 99-115. Go to original source...
  19. Koenig W.D. & Liebhold A.M. 2013: Avian predation pressure as a potential driver of periodical cicada cycle length. - Am. Nat. 181: 145-149. Go to original source...
  20. Liu J., Xu Y., Sun C., Wang X., Zheng Y., Shi S., Chen Z., He Q., Weng X. & Jia L. 2022: Distinct ecological habits and habitat responses to future climate change in three east and southeast Asian Sapindus species. - For. Ecol. Manag. 507: 119982, 12 pp. Go to original source...
  21. Liu T., Liu H., Wang Y. & Yang Y. 2023: Climate change impacts on the potential distribution pattern of Osphya (Coleoptera: Melandryidae), an old but small beetle group distributed in the northern hemisphere. - Insects 14: 476, 18 pp. Go to original source...
  22. Mainali K.P., Warren D.L., Dhileepan K., McConnachie A., Strathie L., Hassan G., Karki D., Shrestha B.B. & Parmesan C. 2015: Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. - Glob. Change Biol. 21: 4464-4480. Go to original source...
  23. Narouei-Khandan H.A., Halbert S.E., Worner S.P. & van Bruggen A.H. 2016: Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. - Eur. J. Plant. Pathol. 144: 655-670. Go to original source...
  24. Naughton-Treves L., Holland M.B. & Brandon K. 2005: The role of protected areas in conserving biodiversity and sustaining local livelihoods. - Annu. Rev. Environ. Resour. 30: 219-252. Go to original source...
  25. Parrey A.H., Raina R.H., Saddam B., Pathak P., Kumar S., Uniyal V.P., Gupta D. & Khan S.A. 2022: Role of bumblebees (Hymenoptera: Apidae) in pollination of high land ecosystems: A review. - Agric. Rev. 43: 368-373. Go to original source...
  26. Peterson A.T. & Soberón J. 2012: Species distribution modeling and ecological niche modeling: getting the concepts right. - Nat. Conserv. 10: 102-107. Go to original source...
  27. Phillips S.J., Anderson R.P. & Schapire R.E. 2006: Maximum entropy modeling of species geographic distributions. - Ecol. Mod. 190: 231-259. Go to original source...
  28. Poloni R., Iannella M., Fusco G. & Fattorini S. 2022: Conservation biogeography of high-altitude longhorn beetles under climate change. - Insect Conserv. Diver. 15: 429-444. Go to original source...
  29. Price B.W., Allan E.L., Marathe K., Sarkar V., Simon C. & Kunte K. 2016: The cicadas (Hemiptera: Cicadidae) of India, Bangladesh, Bhutan, Myanmar, Nepal and Sri Lanka: an annotated provisional catalogue, regional checklist and bibliography. - Biodiv. Data J. 4: e8051, 156 pp. Go to original source...
  30. Raffa K.F., Aukema B.H., Bentz B.J., Carroll A.L., Hicke J.A. & Kolb T.E. 2015: Responses of tree-killing bark beetles to a changing climate. - Clim. Change Insect Pests 7: 173-201. Go to original source...
  31. Raina R.H., Saddam B., Parrey A.H., Pathak P. & Chandra K. 2021: Mites: an emerging problem for bumblebees in the Indian Himalayan Region. - Curr. Sci. 121: 581-585. Go to original source...
  32. Raina R.H., Pathak P., Saddam B. & Parrey A.H. 2023: Role of mining bees (Hymenoptera: Andrenidae) in pollination ecology in India: A review. - Agric. Rev. 44: 66-71. Go to original source...
  33. Reisinger A., Meinshausen M. & Manning M. 2011: Future changes in global warming potentials under representative concentration pathways. - Environ. Res. Lett. 6: 024020, 8 pp. Go to original source...
  34. Saddam B., Idrees M.A., Kumar P. & Mahamood M. 2024: Biopesticides: Uses and importance in insect pest control: A review. - Int. J. Trop. Insect Sci. 44: 1013-1020. Go to original source...
  35. Sanborn A. 2014: Catalogue of the Cicadoidea (Hemiptera: Auchenorrhyncha). Elsevier, London, viii + 1001 pp. Go to original source...
  36. Sarkar V. 2019: A note on the taxonomy and natural history of the Summer Clicker Lahugada dohertyi (Distant, 1891) (Insecta: Hemiptera: Cicadidae) along with its distribution in northern West Bengal, India. - J. Threat. Taxa 11: 14128-14136. Go to original source...
  37. Sime C.H. & Dibaba W.T. 2023: Evaluation of CMIP6 model performance and extreme precipitation prediction in the Awash basin. - Heliyon 9: e21578, 15 pp. Go to original source...
  38. Uden D.R., Allen C.R., Angeler D.G. Corral L. & Fricke K.A. 2015: Adaptive invasive species distribution models: a framework for modelling incipient invasions. - Biol. Invas. 17: 2831-2850. Go to original source...
  39. Wagner D.L., Grames E.M., Forister M.L., Berenbaum M.R. & Stopak D. 2021: Insect decline in the Anthropocene: Death by a thousand cuts. - Proc. Natn. Acad. Sci. 118: e2023989118, 10 pp. Go to original source...
  40. Wang D. & Wei C. 2020: Bacterial communities in digestive and excretory organs of cicadas. - Arch. Microb. 202: 539-553. Go to original source...
  41. Wang Z.-P., Peng S.-Z., He Z.-Q. & Wei C. 2019: Potential impacts of climate change on the distribution of Subpsaltria yangi (Hemiptera: Cicadidae), a rare cicada species in the Loess Plateau and adjacent areas in China. - Acta Entomol. Sin. 62: 91-100.
  42. Williams K.S. & Simon C. 1995: The ecology, behavior, and evolution of periodical cicadas. - Annu. Rev. Entomol. 40: 269-295. Go to original source...
  43. Xue J., Hu X., Hao Y., Gong Y., Wang X., Huang L., Lv S., Xu J., Li S. & Xia S. 2022a: Transmission risk predicting for schistosomiasis in mainland China by exploring ensemble ecological niche modeling. - Trop. Med. Inf. Dis. 8: 24, 13 pp. Go to original source...
  44. Xue Y., Lin C., Wang Y., Liu W., Wan F., Zhang Y. & Ji L. 2022b: Predicting climate change effects on the potential distribution of two invasive cryptic species of the Bemisia tabaci species complex in China. - Insects 13: 1081, 13 pp. Go to original source...
  45. Yadav S., Stow A.J. & Dudaniec R.Y. 2021: Microgeographical adaptation corresponds to elevational distributions of congeneric montane grasshoppers. - Mol. Ecol. 30: 481-498. Go to original source...
  46. Yoshimura J., Hayashi T., Tanaka Y., Tainaka K.I. & Simon C. 2009: Selection for prime-number intervals in a numerical model of periodical cicada evolution. - Evolution 63: 288-294. Go to original source...
  47. Zeng J., Zhou S., Ding J., Luo B. & Qin K. 2012: Behavior characteristics and habitat adaptabilities of the endangered butterfly Teinopalpus aureus in Mount Dayao. - Acta Ecol. Sin. 32: 6527-6534. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.