Eur. J. Entomol. 122: 35-41, 2025 | DOI: 10.14411/eje.2025.004

Fumigant toxicity of allyl isothiocyanate against phosphine-resistant populations of five major stored-grain insect pestsOriginal article

Sudhan SHAH ORCID...*, Rajeswaran JAGADEESAN ORCID...*, Manoj K. NAYAK ORCID...
Department of Primary Industries, Ecosciences Precinct, Level 3C West, GPO Box 267, Brisbane, QLD 4001, Australia; e-mails: sudhan.shah@daf.qld.gov.au, raj.jagadeesan@daf.qld.gov.au, manoj.nayak@daf.qld.gov.au

Given the development of resistance in stored-grain insect pests to phosphine (PH3), the grain industry is seeking alternative methods for effective pest and resistance management. We evaluated the efficacy of allyl isothiocyanate (AITC), a potential alternative fumigant against adults of phosphine-susceptible (PH3-S) and resistant strains (PH3-R) of five major grain insect pests, including Sitophilus oryzae (Linnaeus), Tribolium castaneum (Herbst), Rhyzopertha dominica (Fabricius), Oryzaephilus surinamensis (Linnaeus), and Cryptolestes ferrugineus (Stephens). Adult dose-mortality response curves were established for each species, and the mortality endpoints of post-fumigated adult S. oryzae and T. castaneum were compared. The effect of commodities on the efficacy of AITC was briefly investigated from the perspective of adult insect mortality. The PH3-R strain of S. oryzae was the most tolerant and required the highest dose, LC50: 1.75 µL a.i. L-1, whereas the PH3-R strain of C. ferrugineus was the most susceptible to AITC, requiring the lowest LC50: 0.59 µL a.i. L-1. Comparisons of LC99.9 across the species and strains confirmed that AITC at 2.59 µL a.i. L-1 was adequate in achieving complete control of adults across all five insect species tested, irrespective of their resistance status to phosphine. These results suggest that phosphine-resistant insects fail to confer cross-resistance to AITC. Post-exposure endpoint mortality studies revealed a steady increase in mortality in S. oryzae (from 18% at 24 h to 100% at 168 h). In contrast, no such changes were recorded with T. castaneum, suggesting the existence of species-specific differences in responding to AITC. The presence of insect-infested commodities, such as rolled oats and cracked sorghum, reduced the efficacy of AITC, indicating that this fumigant could be sorptive.

Keywords: Stored grain pests, Coleoptera, fumigants, allyl isothiocyanate, phosphine, adult mortality, resistance

Received: December 10, 2024; Revised: February 9, 2025; Accepted: February 9, 2025; Published online: February 24, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SHAH, S., JAGADEESAN, R., & NAYAK, M.K. (2025). Fumigant toxicity of allyl isothiocyanate against phosphine-resistant populations of five major stored-grain insect pests. EJE122, Article 35-41. https://doi.org/10.14411/eje.2025.004
Download citation

References

  1. Abbott W.S. 1925: A method of computing the effectiveness of an insecticide. - J. Econ. Entomol. 18: 265-267. Go to original source...
  2. Beard R.L. 1949: Time of evaluation and dosage-response curve. - J. Econ. Entomol. 42: 579-585. Go to original source...
  3. Blažević I., Montaut S., Burčul F., Olsen C.E., Burow M., Rollin P. & Agerbirk N. 2020: Glucosinolate structural diversity, identification, chemical synthesis, and metabolism in plants. - Phytochemistry 169: 112100, 57 pp. Go to original source...
  4. Brône B., Peeters P.J., Marrannes R., Mercken M., Nuydens R., Meert T. & Gijsen H.J. 2008: Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. - Toxicol. Appl. Pharmacol. 231: 150-156. Go to original source...
  5. Cato A.J., Elliott B., Nayak M.K. & Phillips T.W. 2017: Geographic variation in phosphine resistance among North American populations of the red flour beetle (Coleoptera: Tenebrionidae). - J. Econ. Entomol. 110: 1359-1365. Go to original source...
  6. Collins P.J., Daglish G.J., Nayak M.K., Ebert P.R., Schlipalius D., Chen W., Pavic H., Lambkin T.M., Kopittke R. & Bridgeman B.W. 2001: Combating resistance to phosphine in Australia. In Donahaye E.J., Navarro S. & Leesch J.G. (eds): Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, Fresno, California, 29 Oct.-3 Nov. 2001. Executive Printing Services, Clovis, CA, pp. 593-607.
  7. Cui Z., Li Y., Xiao S., Tian S., Tang J., Hao Y. & Zhang X. 2024: Recent progresses, challenges and proposals on SF6 emission reduction approaches. - Sci. Total Environ. 906: 167-347. Go to original source...
  8. Daglish G.J. & Pavic H. 2008: Effect of phosphine dose on sorption in wheat. - Pest Manag. Sci. 64: 513-518. Go to original source...
  9. de Souza L.P., Faroni L.R.D.A., Lopes L.M., de Sousa A.H. & Prates I.H.F. 2018: Toxicity and sublethal effects of allyl isothiocyanate to Sitophilus zeamais on population development and walking behaviour. - J. Pest Sci. 91: 761-770. Go to original source...
  10. Dhingra O.D., Costa M.L.N., Silva G.J. & Mizubuti E.S.G. 2004: Essential oil of mustard to control Rhizoctonia solani seedling damping off and seedling blight in nursery. - Fitopatol. Bras. 29: 683-686. Go to original source...
  11. Emergon D.W. 1971: The preparation and isomerization of allyl thiocyanate: An organic chemistry experiment. - J. Chem. Educ. 48: 81-82. Go to original source...
  12. European Food Safety Authority 2010: EFSA panel on food additives and nutrient sources added to food (ANS): Scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. - EFSA J. 8: 1943-1983. Go to original source...
  13. Freitas R.C.P., Faroni L.R.D.A., Haddi K., Jumbo L.O.V. & Oliveira E.E. 2016: Allyl isothiocyanate actions on populations of Sitophilus zeamais resistant to phosphine: Toxicity, emergence inhibition and repellence. - J. Stor. Prod. Res. 69: 257-264. Go to original source...
  14. Hashimoto Y., Sakamoto H., Asai H., Yasoshima M., Lin H.M. & Goka K. 2020: The effect of fumigation with microencapsulated allyl isothiocyanate in a gas-barrier bag against Solenopsis invicta (Hymenoptera: Formicidae). - Appl. Entomol. Zool. 55: 345-350. Go to original source...
  15. Hwaidi M., Collins P.J., Sissons M., Pavic H. & Nayak M.K. 2015: Sorption and desorption of sulfuryl fluoride by wheat, flour, and semolina. - J. Stor. Prod. Res. 62: 65-73. Go to original source...
  16. Jagadeesan R. & Nayak M.K. 2017: Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. - Pest Manag. Sci. 73: 1391-1401. Go to original source...
  17. Jagadeesan R., Singarayan V.T. & Nayak M.K. 2021: A co-fumigation strategy utilising reduced rates of phosphine (PH3) and sulfuryl fluoride (SF) to control strongly resistant rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). - Pest Manag. Sci. 77: 4009-4015. Go to original source...
  18. Kocak E., Schlipalius D., Kaur R., Tuck A., Ebert P., Collins P. & Yilmaz A. 2015: Determining phosphine resistance in rust red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) populations from Turkey. - Turkish J. Entomol. 39: 129-136. Go to original source...
  19. Lorini I., Collins P.J., Daglish G.J., Nayak M.K. & Pavic H. 2007: Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). - Pest Manag. Sci. 63: 358-364. Go to original source...
  20. Mansour E.E., Mi F., Zhang G., Jiugao X., Wang Y. & Kargbo A. 2012: Effect of allyl isothiocyanate on Sitophilus oryzae, Tribolium confusum and Plodia interpunctella: Toxicity and effect on insect mitochondria. - Crop Prot. 33: 40-51. Go to original source...
  21. Nayak M.K. & Daglish G.J. 2018: Importance of stored product insects. In Athanassiou C. & Arthur F. (eds): Recent Advances in Stored Product Protection. Springer, Berlin, Heidelberg, pp. 1-17. Go to original source...
  22. Nayak M.K., Holloway J.C., Emery R.N., Pavic H., Bartlet J. & Collins P.J. 2013: Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): Its characterisation, a rapid assay for diagnosis and its distribution in Australia. - Pest Manag. Sci. 69: 48-53. Go to original source...
  23. Nayak M.K., Jagadeesan R., Kaur R., Daglish G.J., Reid R., Pavic H., Smith L.W. & Collins P.J. 2016: Use of sulfuryl fluoride in the management of strongly phosphine resistant insect pest populations in bulk grain storages in Australia. - Indian J. Entomol. 78: 100-107. Go to original source...
  24. Nayak M.K., Daglish G.J., Phillips T.W. & Ebert P.R. 2020: Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. - Annu. Rev. Entomol. 65: 333-350. Go to original source...
  25. Paes J., Faroni L.R.D'A., Dhingra O., Cecon P. & Silva T. 2012: Insecticidal fumigant action of mustard essential oil against Sitophilus zeamais in maize grains. - Crop Prot. 34: 56-58. Go to original source...
  26. Park C.M., Taormina P.J. & Beuchat L.R. 2000: Efficacy of allyl isothiocyanate in killing enterohemorrhagic Escherichia coli O157:H7 on alfalfa seeds. - Int. J. Food Microbiol. 56: 13-20. Go to original source...
  27. Reddy P.V., Rajashekar Y., Begum K., Leelaja B.C. & Rajendran S. 2007: The relation between phosphine sorption and terminal gas concentrations in successful fumigation of food commodities. - Pest Manag. Sci. 63: 96-103. Go to original source...
  28. Rural Bank 2024: Cropping Exports and Trade Performance in 2022-23. URL: https://www.ruralbank.com.au (last accessed 23 Apr. 2024).
  29. Santos J., Faroni L., Sousa A. & Guedes R. 2011: Fumigant toxicity of allyl isothiocyanate to populations of the red flour beetle Tribolium castaneum. - J. Stor. Prod. Res. 47: 238-243. Go to original source...
  30. Scheffrahn R.H., Hsu R.C., Osbrink W.L. & Su N.Y. 1989: Fluoride and sulphate residues in foods fumigated with sulfuryl fluoride. - J. Agric. Food Chem. 37: 203-206. Go to original source...
  31. Sims S.R. & Stone T.B. 1991: Genetic basis of tobacco budworm resistance to an engineered Pseudomonas fluorescens expressing the δ-endotoxin of Bacillus thuringiensis kurstaki. - J. Invertebr. Pathol. 57: 206-210. Go to original source...
  32. Tsai W.T. 2007: The prediction of environmental fate for trifluoromethyl sulphur pentafluoride (SF5CF3), a potent greenhouse gas. - J. Hazard. Mater. 149: 747-751. Go to original source...
  33. Vandicke J., De Visschere K., Deconinck S., Leenknecht D., Vermeir P., Audenaert K. & Haesaert G. 2020: Uncovering the biofumigant capacity of allyl isothiocyanate from several Brassicaceae crops against Fusarium pathogens in maize. - J. Sci. Food Agric. 100: 5476-5486. Go to original source...
  34. Vilela A.D.O., Faroni L.R., Rodrigues A.A.Z., Heleno F.F., De Queiroz M.E.L.R., Moura E.D.S. & Gomes J.S.L. 2020a: Headspace solid-phase microextraction: validation of the method and determination of allyl isothiocyanate persistence in cowpea beans. - ACS Omega 5: 21364-21373. Go to original source...
  35. Vilela A.D.O., Faroni L.R., Sousa A.H., Pimentel M.A. & Gomes J.L. 2020b: Toxicological and physiological effects of allyl isothiocyanate upon Callosobruchus maculatus. - J. Stor. Prod. Res. 87: 101625, 7 pp. Go to original source...
  36. VSN International 2022: Genstat for Windows 22nd Ed. VSN International, UK, URL: https://vsni.co.uk/software/genstat/
  37. Winks R.G. 1986: The significance of response time in the detection and measurement of fumigant resistance in insects with special reference to phosphine. - Pesticide Sci. 17: 165-174. Go to original source...
  38. Wu H., Zhang G., Zeng S. & Lin K. 2009: Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. - Pest Manag. Sci. 65: 1003-1008. Go to original source...
  39. Zanda I.A. & Ferris H. 2003: Sensitivity of Meloidogyne javanica and Tylenchulos semipentrans to isothiocyanates in laboratory assays. - Phytopathology 93: 747-750. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.