Eur. J. Entomol. 121: 269-279, 2024 | DOI: 10.14411/eje.2024.028
Bioaccumulation of pesticides in carabid beetles in a vineyard and olive grove under integrated pest managementCarabidological special issueOriginal article
- 1 Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia; e-mails: slucija@biol.pmf.hr, barbara.andelic@gmail.com
- 2 Varaždin City Museum, Šetalište Josipa Jurja Strossmayera 3, Varaždin, Croatia; e-mail: mjelic@gmail.com
- 3 Department for Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Višeslava 6, Zadar, Croatia; e-mail: tkos@unizd.hr
Intensive use of pesticides is among the main drivers of biodiversity loss, especially of insects. Here, field concentrations of chemical synthetic pesticides were measured in soil and carabid beetles in a vineyard (VP) and olive grove (OP), in two consecutive years. The aim was to determine if active ingredients in pesticides applied in the field accumulate in carabids and how this correlates with treatment intensity. Carabids and soil samples were collected at a vineyard and olive grove in Zadar County in Croatia, soil in 2018 and 2019 and carabids in 2019. Both were under integrated pest management (IPM), with a total of 34 pesticides applied, between January and August in the two years of this study. Using LC-MS/MS, a broad range of pesticides, mainly fungicides, was detected in the soil and carabids. In soil samples, boscalid (0.047 mg/kg), mandipropamid (0.08 mg/kg), fluopyram (0.09 mg/kg), cyprodinil (0.09 mg/kg) and tebuconazole (0.13 mg/kg) were detected in the highest amounts. In addition, nine substances were detected in carabids, with valiphenalate (0.048 mg/kg), difenoconazole (0.051 mg/kg) and azoxystrobin (0.064 mg/kg) in the highest concentrations. Bioaccumulation factor (BAF) indicated the accumulation of valiphenalate, metalaxyl-M, spiroxamine and difenoconazole in carabids. Data measured directly in the field revealed the accumulation of pesticides in carabids, which indicates they could be good bioindicators in IPM and contribute to a better understanding of the distribution of pesticides in Mediterranean agroecosystems.
Keywords: Carabidae, ground beetles, IPM, agriculture, pesticide active ingredient, Mediterranean region, Croatia
Received: April 8, 2024; Revised: June 3, 2024; Accepted: June 3, 2024; Published online: July 16, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ali S., Ullah M.I., Sajjad A., Shakeel Q. & Hussain A. 2021: Environmental and health effects of pesticide residues. In Inamuddin Ahamed M.I. & Lichtfouse E. (eds): Sustainable Agriculture Reviews 48. Springer, Cham, pp. 311-336.
Go to original source...
- Andrade C., Villers A., Balent G., Bar-Hen A., Chadoeuf J., Cylly D., Cluzeau D., Fried G., Guillocheau S. & Pillon O. et al. 2021: A real-world implementation of a nationwide, long-term monitoring program to assess the impact of agrochemicals and agricultural practices on biodiversity. - Ecol. Evol. 11: 3771-3793.
Go to original source...
- Basley K. & Goulson D. 2017: Effects of chronic exposure to clothianidin on the earthworm Lumbricus terrestris. - PeerJ 5: e3177, 16 pp.
Go to original source...
- Bohan D.A., Boursault A., Brooks D.R. & Petit S. 2011: National-scale regulation of the weed seedbank by carabid predators. - J. Appl. Ecol. 48: 888-898.
Go to original source...
- Bonmatin J.M., Giorio C., Girolami V., Goulson D., Kreutzweiser D.P., Krupke C., Liess M., Long E., Marzaro M. & Mitchell E.A. et.al. 2015: Environmental fate and exposure; neonicotinoids and fipronil. - Environ. Sci. Pollut. Res. 22: 35-67.
Go to original source...
- Botías C., David A., Hill E.M. & Goulson D. 2016: Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. - Sci. Total Environ. 566: 269-278.
Go to original source...
- Brust G.E. 1990: Direct and indirect effects of four herbicides on the activity of carabid beetles (Coleoptera: Carabidae). - Pestic. Sci. 30: 309-320.
Go to original source...
- Calow P. 1991: Physiological costs of combating chemical toxicants: ecological implications. - Comp. Biochem. Physiol. (C) 100: 3-6.
Go to original source...
- Cloyd R.A. & Bethke J.A. 2011: Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. - Pest Manag. Sci. 67: 3-9.
Go to original source...
- Cruz-Miralles J., Guzzo M., Ibáñez-Gual M.V., Dembilio Ó. & Jaques. J.A. 2022: Ground-covers affect the activity density of ground-dwelling predators and their impact on the Mediterranean fruit fly, Ceratitis capitata. - BioControl 67: 583-592.
Go to original source...
- Ding W., Guo L., Xue Y., Wang M., Li C., Zhang R., Zhang S. & Xia X. 2024: Life parameters and physiological reactions of cotton aphids Aphis gossypii (Hemiptera: Aphididae) to sublethal concentrations of afidopyropen. - Agronomy 14: 258, 17 pp.
Go to original source...
- Douglas M.R., Rohr J.R. & Tooker J.F. 2014: Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. - J. Appl. Ecol. 52: 250-260.
Go to original source...
- Dudley N., Attwood J.S., Goulson D., Jarvis D., Pervez Bharucha Z. & Pretty J. 2017: How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? - Biol. Conserv. 209: 449-453.
Go to original source...
- EFSA (European Food Safety Authority) 2010: Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin. - EFSA Journal 8(4): 15421542, 110 pp.
Go to original source...
- EFSA (European Food Safety Authority) 2011: Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole. - EFSA Journal 9(1): 1967, 71 pp.
Go to original source...
- EFSA (European Food Safety Authority) 2013a: Conclusion on the peer review of the pesticide risk assessment of the active substance pyriofenone. - EFSA Journal 11(4): 3147, 84 pp.
Go to original source...
- EFSA (European Food Safety Authority) 2013b: Conclusion on the peer review of the pesticide risk assessment of the active substance valifenalate. - EFSA Journal 11(6): 3253, 58 pp.
Go to original source...
- EFSA (European Food Safety Authority) 2018: Conclusion on the peer review of the pesticide risk assessment of the active substance dimethoate. - EFSA Journal 16(10): 5454, 29 pp.
- EFSA (European Food Safety Authority) 2021: Conclusion on the peer review of the pesticide risk assessment for the active substance spiroxamine in light of confirmatory data submitted. - EFSA Journal 19(2): 6385, 13 pp.
Go to original source...
- EFSA (European Food Safety Authority) 2023a: Outcome of the Consultation with Member States, the Applicant and EFSA on the Pesticide Risk Assessment for Difenoconazole in Light of Confirmatory Data. Technical Report, EFSA supporting publication, EN-8474, 93 pp.
- EFSA (European Food Safety Authority) 2023b: Conclusion on the peer review of the pesticide risk assessment of the active substance dimethomorph. - EFSA Journal 21(6): 8032, 37 pp.
- EFSA (European Food Safety Authority) 2023c: Peer review of the pesticide risk assessment of the active substance metalaxyl-M (amendment of approval conditions). - EFSA Journal 21(10): 21 pp.
- EFSA (European Food Safety Authority) 2023d: Peer review of the pesticide risk assessment of the active substance glyphosate. - EFSA Journal 21(7): 52 pp.
- El Jaouhari M., Damour G., Tixier P. & Coulis M. 2023: Glyphosate reduces the biodiversity of soil macrofauna and benefits exotic over native species in a tropical agroecosystem, - Basic Appl. Ecol. 73: 18-26.
Go to original source...
- Elzen G.W. 1990: Sublethal effects of pesticides on beneficial parasitoids. In Jepson P.C. (ed.): Pesticides and Non-target Invertebrates. Intercept, Wimborne, pp. 129-150.
- EU Commission 2018: Current Status of the Neonicotinoids in the EU. URL: https://ec.europa.eu/food/plant/pesticides/approval_active_substances/approval_renewal/neonicotinoids_en (last accessed 29 Feb. 2024).
- Geissen V., Silva V., Lwanga E.H., Beriot N., Oostindie K., Bin Z., Pyne E., Busink S., Zomer P., Mol H. & Ritsema C.J. 2021: Cocktails of pesticide residues in conventional and organic farming systems in Europe - Legacy of the past and turning point for the future. - Environ. Poll. 278: 116827, 11 pp.
Go to original source...
- Goulson D. 2013: An overview of the environmental risks posed by neonicotinoid insecticides. - J. Appl. Ecol. 50: 977-987.
Go to original source...
- Hatteland B.A., Grutle K., Mong C.E., Skartveit J., Symondson W.O.C. & Solhøy T. 2010: Predation by beetles (Carabidae, Staphylinidae) on eggs and juveniles of the Iberian slug Arion lusitanicus in the laboratory. - Bull. Entomol. Res. 100: 559-567.
Go to original source...
- Homburg K., Drees C., Boutaud E., Nolte D., Schuett W., Zumstein P., von Ruschkowski E. & Assmann T. 2019: Where have all the beetles gone? Long-term study reveals carabid species decline in a nature reserve in Northern Germany. - Insect Conserv. Divers. 12: 268-277.
Go to original source...
- Ivanković Tatalović L., Anđelić B., Jelić M., Kos T., Benítez H.A. & Šerić Jelaska L. 2020: Fluctuating asymmetry as a method of assessing environmental stress in two predatory carabid species within Mediterranean agroecosystems. - Symmetry 12: 1890, 17 pp.
Go to original source...
- Ivanković Tatalović L., Mašek T. & Šerić Jelaska L. 2023: Dietary, locomotory, and metabolic reactions of Abax parallelus (Coleoptera, Carabidae) to acute thiamethoxam intoxication. - Ecotoxicology 32: 290-299.
Go to original source...
- Kramarz P. 1999: Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 1. The ground beetle, Poecilus cupreus L. - Bull. Environ. Contam. Toxicol. 63: 531-537.
Go to original source...
- Kromp B. 1999: Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. - Agric. Ecosyst. Environ. 74: 187-228.
Go to original source...
- Kunkel B.A., Held D.W. & Potter D.A. 2001: Lethal and sublethal effects of bendiocarb, halofenozide, and imidacloprid on Harpalus pennsylvanicus (Coleoptera: Carabidae) following different modes of exposure in turfgrass. - J. Econ. Entomol. 94: 60-67.
Go to original source...
- Lewis K.A., Tzilivakis J., Warner D. & Green A. 2016: An international database for pesticide risk assessments and management. - Human Ecol. Risk Assess. Int. J. 22: 1050-1064.
Go to original source...
- Lundgren J.G. 2009: Relationships of Natural Enemies and Non-Prey Foods. Progress in Biological Control 7, Springer, New York, 453 pp.
Go to original source...
- Lushchak V.I., Matviishyn T.M., Husak V.V., Storey J.M. & Storey K.B. 2018: Pesticide toxicity: a mechanistic approach. - EXCLI J. 17: 1101-1136.
- Maryanski M., Kramarz P., Laskowski R. & Niklinska M. 2002: Decreased energetic reserve, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food. - Ecotoxicology 11: 127-139.
Go to original source...
- Mauchline A.L., Osborne J.L. & Powell W. 2004: Feeding responses of carabid beetles to dimethoate-contaminated prey. - Agric. For. Entomol. 6: 99-104.
Go to original source...
- Merivee E., Tooming E., Must A., Sibul I. & Williams I. 2015: Low doses of the common alpha-cypermethrin insecticide affect behavioural thermoregulation of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae). - Ecotoxicol. Environ. Saf. 120: 286-294.
Go to original source...
- Michalková V. & Pekár S. 2009: How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). - Biol. Contr. 51: 444-449.
Go to original source...
- National Center for Biotechnology Information 2024a: PubChem Compound Summary for CID 86298, Dimethomorph. Retrieved March 19, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Dimethomorph.
- National Center for Biotechnology Information 2024b: PubChem Compound Summary for CID 11338509, Valifenalate. Retrieved March 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Valifenalate.
- National Center for Biotechnology Information 2024c: PubChem Compound Summary for CID 3082, Dimethoate. Retrieved February 29, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Dimethoate
- National Center for Biotechnology Information 2024d: PubChem Compound Summary for CID 51605, Fenoxycarb. Retrieved March 22, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Fenoxycarb.
- Newbold T., Oppenheimer P., Etard A. & Williams J.J. 2020: Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. - Nat. Ecol. Evol. 4: 1630-1638.
Go to original source...
- Petit S. & Bohan D. 2018: The Use of Insects in Integrated Weed Management. Integrated Weed Management for Sustainable Agriculture 42, Burleigh Dodds Science Publishing, Cambridge, 476 pp.
Go to original source...
- Pisa L.W., Amaral-Rogers V., Belzunces L.P., Bonmatin J.M., Downs C.A., Goulson D., Kreutzweiser D.P., Krupke C., Liess M., McField M., Morrissey C.A., Noome D.A., Settele J., Simon-Delso N., Stark J.D., Van der Sluijs J.P., Van Dyck H. & Wiemers M. 2015: Effects of neonicotinoids and fipronil on non-target invertebrates. - Environ. Sci. Pollut. Res. 22: 68-102.
Go to original source...
- Prasifka J.R., Lopez M.D., Hellmich R.L. & Prasifka P.L. 2008: Effects of insecticide exposure on movement and population size estimates of predatory ground beetles (Coleoptera: Carabidae). - Pest Manag. Sci. 64: 30-36.
Go to original source...
- Russon H. & Woltz J.M. 2014: Movement patterns of carabid beetles between heterogenous crop and noncrop habitats. Great Lakes Entomol. 47: 186-202.
Go to original source...
- Sanchez-Bayo F. & Wyckhuysb K.A.G. 2019: Worldwide decline of the entomofauna: A review of its drivers. - Biol. Conserv. 232: 8-27.
Go to original source...
- Saska P. 2004: Carabid larvae as predators of weed seeds: granivory in larvae of Amara eurynota (Coleoptera: Carabidae). - J. Agric. Appl. Biol 69(3): 27-33.
- Šerić Jelaska L. & Symondson W.O. 2016: Predation on epigeic, endogeic and anecic earthworms by carabids active in spring and autumn. - Period. Biol. 118: 281-289.
Go to original source...
- Šerić Jelaska L., Franjević D., Jelaska S.D. & Symondson W.O.C. 2014a: Prey detection in carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. - Eur. J. Entomol. 111: 631-638.
Go to original source...
- Šerić Jelaska L., Jurasović J., Brown D.S., Vaughan I.P. & Symondson W.O.C. 2014b: Molecular field analysis of trophic relationships in soil dwelling invertebrates to identify mercury, lead and cadmium transmission through forest ecosystems. - Mol. Ecol. 23: 3755-3766.
Go to original source...
- Silva V., Mol H.G.J., Zomer P., Tienstra M., Ritsema C.J. & Geissen V. 2019: Pesticide residues in European agricultural soils - A hidden reality unfolded. - Sci. Total Environ. 653: 1532-1545.
Go to original source...
- Suenaga H. & Hamamura T. 1998: Laboratory evaluation of carabid beetles (Coleoptera: Carabidae) as predators of diamondback moth (Lepidoptera: Plutellidae) larvae. - Environ. Entomol. 27: 767-772.
Go to original source...
- Sullivan J. 2000: Environmental Fate of Fenoxycarb. Environmental Monitoring & Pest Management Branch, Department of Pesticide Regulation, Sacramento. 9 pp. URL: http://piat.org.nz/uploads/PIAT_content/pdfs/Environmental%20fate%20of%20Fenoxycarb.pdf
- Sullivan T.P & Sullivan D.S. 2003: Vegetation management and ecosystem disturbance: impact of glyphosate herbicide on plant and animal diversity in terrestrial systems. - Environ. Rev. 11: 37-59.
Go to original source...
- Symondson W.O.C. 1997: Does Tandonia budapestenis (Mollusca: Pulmonata) contain toxins? Evidence from feeding trials with the slug predator Pterostichus melanarius (Coleoptera: Carabidae). - J. Molluscan Stud. 63: 541-545.
Go to original source...
- Qiu Y. & Chen Z. 2024: Intergenerational effects of sublethal lambda-cyhalothrin exposure on Aphis gossypii Glover (Hemiptera: Aphididae) reproduction and development. - Insects 15, 173, 13 pp.
Go to original source...
- Tang H.M.F., Lenzen M., McBratney A. & Maggi F. 2021: Risk of pesticide pollution at the global scale. - Nat. Geosci. 14: 206-210.
Go to original source...
- TIBCO Software Inc 2020: TIBCO Statistica, v. 14.0.0. TIBCO Software Inc, Palo Alto, CA. URL: https://www.tibco.com/products/tibco-statistica
- Tooming E., Merivee E., Must A., Merivee M.I., Sibul I., Nurme K. & Williams I.H. 2017: Behavioural effects of the neonicotinoid insecticide thiamethoxam on the predatory insect Platynus assimilis. - Ecotoxicology 26: 902-913.
Go to original source...
- Whitehorn P.R., O'Connor S., Wackers F.L. & Goulson D. 2012: Neonicotinoid pesticide reduces bumble bee colony growth and queen production. - Science 336: 351-352.
Go to original source...
- Wood T.J. & Goulson D. 2017: The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. - Environ. Sci. Pollut. Res. 24: 17285-17325.
Go to original source...
- Yao F.L., Zheng Y., Zhao J.W., Desneux N., He Y.X. & Weng Q.Y. 2015: Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. - Chemosphere 128: 49-55.
Go to original source...
- Zaller J.G., Cantelmo C., Santos G.D., Muther S., Gruber E., Pallua P., Mandl K., Friedrich B., Hofstetter I., Schmuckenschlager B. & Faber F. 2018: Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. - Environ. Sci. Pollut. Res. Int. 25: 23215-23226.
Go to original source...
- Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Jason R., Scharmüller A., Smalling K., Stehle S., Schulz R. & Schäfer R.B. 2019: Fungicides: An overlooked pesticide class? - Environ. Sci. Technol. 53: 3347-3365.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.