Eur. J. Entomol. 121: 260-268, 2024 | DOI: 10.14411/eje.2024.027
Identification and functional analysis of six DNAJ genes from Myzus persicae (Hemiptera: Aphididae) in response to UV-B stressOriginal article
- 1 Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China; e-mails: helongchun0303@gmail.com, guysma9@gmail.com, yangchangli@126.com, aneira1994@163.com, gzuzcy1121@126.com
- 2 Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China; e-mail: mengjy0417@163.com
Ultraviolet B (UV-B) is a significant environmental factor affecting insect development, survival, and reproduction. DNAJ proteins are molecular chaperones found ubiquitously in insects that are crucial for their adaptation to environmental stresses. This study aimed to elucidate the roles of DNAJ genes in the response of Myzus persicae to UV-B stress. Herein, we identified six DNAJ genes in the aphid M. persicae, a devastating agricultural pest. We analyzed their expression profiles at different stages of development, in different tissues and for various durations of UV-B exposure. The expression levels of MpDNAJC30, MpDNAJC11, MpDNAJC2, and MpDNAJC3 were highest in wingless adults, while MpDNAJC9 and MpDNAJC17 were highest in second- and third-instar nymphs, respectively. Six MpDNAJs had higher expression levels in the epidermis and embryos, and lower levels in the head. Additionally, the expression levels of all genes increased significantly under different durations of UV-B exposure. Knockout of the DNAJ genes using RNA interference caused a significant decline in the survival rate, weight, body length, and body width of M. persicae exposed to UV-B radiation. Our research provides valuable insights into the stress response mechanisms of M. persicae, highlighting the importance of DNAJ genes in mediating their adaptation to UV-B stress.
Keywords: Aphid, agricultural pest, heat shock proteins, RNAi, UV radiation stress
Received: May 17, 2024; Revised: June 19, 2024; Accepted: June 19, 2024; Published online: July 15, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Adams N.L. & Shick J.M. 2001: Mycosporine-like amino acids prevent UVB-induced abnormalities during early development of the green sea urchin Strongylocentrotus droebachiensis. - Mar. Biol. 138: 267-280.
Go to original source...
- Ahmed N., Chamila Darshanee H.L., Fu W.Y., Hu X.S., Fan Y. & Liu T.X. 2018: Resistance of seven cabbage cultivars to green peach aphid (Hemiptera: Aphididae). - J. Econ. Entomol. 111: 909-916.
Go to original source...
- Ajit Tamadaddi C. & Sahi C. 2016: J domain independent functions of J proteins. - Cell Stress Chaper. 21: 563-570.
Go to original source...
- Alwaneen W.S., Husain M., Rasool K.G., Alwatban M.A., Salman S., Shaheen F.A., Alduailij M.A. & Aldawood A.S. 2019: Prediction of survival ratios of Cadra cautella (Lepidoptera: Pyralidae) different life stages after treated with ultraviolet radiation in dates. - Saudi J. Biol. Sci. 26: 1358-1363.
Go to original source...
- Chen Q., Wen M., Li J., Zhou H., Jin S., Zhou J.J., Wang Y. & Ren B. 2019: Involvement of heat shock protein 40 in the wing dimorphism of the house cricket Acheta domesticus. - J. Insect Physiol. 114: 35-44.
Go to original source...
- Chen X., Li Z.D., Li D.T., Jiang M.X. & Zhang C.X. 2021: HSP70/DNAJ family of genes in the brown planthopper, Nilaparvata lugens: diversity and function. - Genes 12: 394, 20 pp.
Go to original source...
- Colinet H., Lee S.F. & Hoffmann A. 2010: Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. - FEBS J. 277: 174-185.
Go to original source...
- Cooper A.M., Silver K., Zhang J., Park Y. & Zhu K.Y. 2019: Molecular mechanisms influencing efficiency of RNA interference in insects. - Pest Manag. Sci. 75: 18-28.
Go to original source...
- Craig E.A. & Marszalek J. 2017: How do J-proteins get Hsp70 to do so many different things? - Trends Biochem. Sci. 42: 355-368.
Go to original source...
- Ding C.Y., Ma Y.M., Li B., Wang Y., Zhao L., Peng J.N., Li M.Y., Liu S. & Li S.G. 2022: Identification and functional analysis of differentially expressed genes in Myzus persicae (Hemiptera: Aphididae) in response to trans-anethole. - J. Insect Sci. 22: 3, 9 pp.
Go to original source...
- Gao H., Lin X., Yuan X., Zou J., Zhang H., Zhang Y. & Liu Z. 2023: The salivary chaperone protein NlDNAJB9 of Nilaparvata lugens activates plant immune responses. - J. Exp. Bot. 74: 6874-6888.
Go to original source...
- Guo S.H., Yu L., Liu Y.M., Wang F.F., Chen Y.C., Wang Y., Qiu B.L. & Sang W. 2019: Digital gene expression profiling in larvae of Tribolium castaneum at different periods post UV-B exposure. - Ecotoxicol. Environ. Saf. 174: 514-523.
Go to original source...
- Hideg E., Jansen M.A.K. & Strid A. 2013: UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? - Trends Plant Sci. 18: 107-115.
Go to original source...
- Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W. & Liu Q. 2022: Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. - MedComm 3: e161, 39 pp.
Go to original source...
- Huang M., Meng J.Y., Zhou L., Yu C. & Zhang C.Y. 2023: Expression and function of opsin genes associated with phototaxis in Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae). - Pest Manag. Sci. 79: 4490-4500.
Go to original source...
- Huvenne H. & Smagghe G. 2010: Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. - J. Insect Physiol. 56: 227-235.
Go to original source...
- Kampinga H.H. & Craig E.A. 2010: The HSP70 chaperone machinery: J proteins as drivers of functional specificity. - Nat. Rev. Mol. Cell Biol. 11: 579-592.
Go to original source...
- Kampinga H.H., Andreasson C., Barducci A., Cheetham M.E., Cyr D., Emanuelsson C., Genevaux P., Gestwicki J.E., Goloubinoff P., Huerta-Cepas J. et al. 2019: Function, evolution, and structure of J-domain proteins. - Cell Stress Chaper. 24: 7-15.
Go to original source...
- Karademir B. & Sari-Kaplan G. 2018: Heat shock protein (Hsp). In Choi S. (ed.): Encyclopedia of Signaling Molecules. Springer, Cham, pp. 2330-2339.
Go to original source...
- Kim R.O., Rhee J.S., Won E.J., Lee K.W., Kang C.M., Lee Y.M. & Lee J.S. 2011: Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp. - Aquat. Toxicol. 101: 529-539.
Go to original source...
- King A.M. & Macrae T.H. 2015: Insect heat shock proteins during stress and diapause. - Annu. Rev. Entomol. 60: 59-75.
Go to original source...
- Kirchner S.M., Döring T.F. & Saucke H. 2005: Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). - J. Insect Physiol. 51: 1255-1260.
Go to original source...
- Lai R., You M., Zhu C., Gu G., Lin Z., Liao L., Lin L. & Zhong X. 2017: Myzus persicae and aphid-transmitted viral disease control via variety intercropping in flue-cured tobacco. - Crop Prot. 100: 157-162.
Go to original source...
- Li G., Zhao H., Zhang X., Zhang Y., Zhao H., Yang X., Guo X. & Xu B. 2018: Environmental stress responses of DnaJA1, DnaJB12 and DnaJC8 in Apis cerana cerana. - Front. Genet. 9: 445, 13 pp.
Go to original source...
- Li G., Zhang S., Wang H., Liang L., Liu Z., Wang Y., Xu B. & Zhao H. 2022: Differential expression characterisation of the heat shock proteins DnaJB6, DnaJshv, DnaJB 13, and DnaJB 14 in Apis cerana cerana under various stress conditions. - Front. Ecol. Evol. 10: 873791, 13 pp.
Go to original source...
- Livak K.J. & Schmittgen T.D. 2001: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408.
Go to original source...
- Lo J.F., Hayashi M., Woo-Kim S., Tian B., Huang J.F., Fearns C., Takayama S., Zapata J.M., Yang Y. & Lee J.D. 2004: Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. - Mol. Cell. Biol. 24: 2226-2236.
Go to original source...
- Mahroof R., Yan Zhu K., Neven L., Subramanyam B. & Bai J. 2005: Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). - Comp. Biochem. Physiol. (A) 141: 247-256.
Go to original source...
- Paul N.D. & Gwynn-Jones D. 2003: Ecological roles of solar UV radiation: towards an integrated approach. - Trends Ecol. Evol. 18: 48-55.
Go to original source...
- Rodriguez F., Arsène-Ploetze F., Rist W., Rüdiger S., Schneider-Mergener J., Mayer M.P. & Bukau B. 2008: Molecular basis for regulation of the heat shock transcription factor σ32 by the Dnak and DnaJ chaperones. - Mol. Cell 32: 347-358.
Go to original source...
- Sang W., Yu L., He L., Ma W.H., Zhu Z.H., Zhu F., Wang X.P. & Lei C.L. 2016: UVB radiation delays Tribolium castaneum metamorphosis by influencing ecdysteroid metabolism. - PLoS ONE 11: e0151831, 16 pp.
Go to original source...
- Sopha P., Meerod T., Chantrathonkul B., Phutubtim N., Cyr D.M. & Govitrapong P. 2023: Novel functions of the ER-located Hsp40s DNAJB12 and DNAJB14 on proteins at the outer mitochondrial membrane under stress mediated by CCCP. - Mol. Cell. Biochem. https://doi.org/10.1007/s11010-023-04866-1
Go to original source...
- Stark J.L., Mehla K., Chaika N., Acton T.B., Xiao R., Singh P.K., Montelione G.T. & Powers R. 2014: Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relationship to pancreatic cancer. - Biochemistry 53: 1360-1372.
Go to original source...
- Tang L., Li A., Kong M., Dionysiou D.D. & Duan X. 2023: Effects of wavelength on the treatment of contaminants of emerging concern by UV-assisted homogeneous advanced oxidation/reduction processes. - Sci. Total Environ. 899: 165625, 14 pp.
Go to original source...
- Tapia D.H., Troncoso A.J., Vargas R.R., Olivares-Donoso R. & Niemeyer H.M. 2008: Experimental evidence for competitive exclusion of Myzus persicae nicotianae by Myzus persicae s.s. (Hemiptera: Aphididae) on sweet pepper, Capsicum annuum (Solanaceae). - Eur. J. Entomol. 105: 643-648.
Go to original source...
- Van Atta K.J., Potter K.A. & Woods A. 2015: Effects of UV-B on environmental preference and egg parasitization by Trichogramma wasps (Hymenoptera: Trichogrammatidae). - J. Entomol. Sci. 50: 318-325.
Go to original source...
- Vandenbussche F., Yu N., Li W., Vanhaelewyn L., Hamshou M., Van Der Straeten D. & Smagghe G. 2018: An ultraviolet B condition that affects growth and defense in Arabidopsis. - Plant Sci. 268: 54-63.
Go to original source...
- Villena O.C., Momen B., Sullivan J. & Leisnham P.T. 2018: Effects of ultraviolet radiation on metabolic rate and fitness of Aedes albopictus and Culex pipiens mosquitoes. - PeerJ 6: e6133, 20 pp.
Go to original source...
- Wang L.J., Zhou L.J., Zhu Z.H., Ma W.H. & Lei C.L. 2014: Differential temporal expression profiles of heat shock protein genes in Drosophila melanogaster (Diptera: Drosophilidae) under ultraviolet A radiation stress. - Environ. Entomol. 43: 1427-1434.
Go to original source...
- Wang Q., Liu J.T., Zhang Y.J., Chen J.L., Li X.C., Liang P., Gao X.W., Zhou J.J. & Gu S.H. 2021: Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. - Insect Biochem. Mol. Biol. 130: 103528, 12 pp.
Go to original source...
- Wasielewski O., Wojciechowicz T., Giejdasz K. & Krishnan N. 2015: Enhanced UV-B radiation during pupal stage reduce body mass and fat content, while increasing deformities, mortality and cell death in female adults of solitary bee Osmia bicornis. - Insect Sci. 22: 512-520.
Go to original source...
- Weber G. 1985: Genetic variability in host plant adaptation of the green peach aphid, Myzus persicae. - Entomol. Exp. Appl. 38: 49-56.
Go to original source...
- Yan S., Qian J., Cai C., Ma Z., Li J., Yin M., Ren B. & Shen J. 2020: Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. - J. Pest Sci. 93: 449-459.
Go to original source...
- Yang X.Q., Zhang Y.L., Wang X.Q., Dong H., Gao P. & Jia L.Y. 2016: Characterization of multiple heat-shock protein transcripts from Cydia pomonella: their response to extreme temperature and insecticide exposure. - J. Agric. Food Chem. 64: 4288-4298.
Go to original source...
- Yang C.L., Meng J.Y., Zhou L. & Zhang C.Y. 2022: Induced heat shock protein 70 confers biological tolerance in UV-B stress-adapted Myzus persicae (Hemiptera). - Int. J. Biol. Macromol. 220: 1146-1154.
Go to original source...
- Ye C., Jiang Y.D., An X., Yang L., Shang F., Niu J. & Wang J.J. 2019: Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (Acyrthosiphon pisum). - Sci. Rep. 9: 3694, 10 pp.
Go to original source...
- Young J.C. 2010: Mechanisms of the Hsp70 chaperone system. - Biochem. Cell Biol. 88: 291-300.
Go to original source...
- Zhang G., Storey J.M. & Storey K.B. 2011: Chaperone proteins and winter survival by a freeze tolerant insect. - J. Insect Physiol. 57: 1115-1122.
Go to original source...
- Zhang X., Li G., Yang X., Wang L., Wang Y., Guo X., Li H. & Xu B. 2019: Identification of a DnaJ3 gene in Apis cerana cerana and its involvement in various stress responses. - Pestic. Biochem. Physiol. 160: 171-180.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.