Eur. J. Entomol. 121: 134-145, 2024 | DOI: 10.14411/eje.2024.016
Use of powdered immunized insects for inhibiting Pectobacterium carotovorum infestation and promoting growth in lettuceOriginal article
- 1 Department of Applied Biology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea; e-mails: 5120057@kangwon.ac.kr (Y.C.), parkki01@naver.com (K.B.P.), mjkim@k-insect.com (M.K.), bug216@hanmail.net (S.S.P.), tpwjd321@korea.kr (S.H.), saeyoullcho@kangwon.ac.kr (S.C.)
- 2 Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea, e-mail: john1232817@kangwon.ac.kr (J.H.L.)
- 3 Osang Kinsect Co., Guri, Republic of Korea; e-mail: pjw@k-insect.com (J.P.)
We induced immune activation in mass rearing experiments in three insect species, i.e., Gryllus bimaculatus De Geer, 1773 (Orthoptera: Gryllidae), Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae), and Protaetia brevitarsis seulensis (Kolbe, 1886) (Coleoptera: Scarabaeidae). Lysosomal staining of immune cells was a little over 6% in the control group insects, whereas it ranged from 17-35% in insects immunized with Escherichia coli K12 or Bacillus thuringiensis (Bt). The expression of attacin-like protein and defensin-like protein was also found to be upregulated at least 10-fold, and even up to 30-fold, from the third day of rearing in insects immunized with E. coli K12 or Bt. Non-immunized or immunized G. bimaculatus, H. illucens, and P. brevitarsis seulensis were freeze-dried and powdered, and these powders were then tested for protection against Pectobacterium carotovorum infestation. No inhibitory effects on P. carotovorum were observed when using all non-immunized insect powders or PBS. However, in the clear zone test treated with H. illucens powder at 10,000 ppm, an average size of 21.67 mm was observed. In a test using potato slices infected with P. carotovorum, we observed severe disease occurrence and potato weight loss in all non-immunized insect powders or PBS-treated groups. However, the group treated with H. illucens powder had the least potato weight loss. When tested on lettuce, the H. illucens powder-treated group revealed an approximately 10% increase in the fresh weight of lettuce, with both the dry weight and leaf area of lettuce increasing in comparison with those in the control group. Thus, our study proposes a novel method for the use of freeze-dried and powdered forms of insects immunized in mass rearing as effective functional fertilizers on a large scale that can also be effective in inhibiting microbial infections, overcoming the limitation of high production costs of such insect fertilizers using conventional methods.
Keywords: Hermetia illucens, insect immunization, plant pathogen, insect-based fertilizers
Received: September 19, 2023; Revised: March 20, 2024; Accepted: March 20, 2024; Published online: April 8, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Anyega A.O., Korir N.K., Beesigamukama D., Changeh G.J., Nkoba K., Subramanian S., van Loon J.J.A., Dicke M. & Tanga C.M. 2021: Black soldier fly-composted organic fertilizer enhances growth, yield, and nutrient quality of three key vegetable crops in Sub-Saharan Africa. - Front. Plant Sci. 12: 680312, 14 pp.
Go to original source...
- Bang K., Hwang S., Lee J. & Cho S. 2015: Identification of immunity-related genes in the larvae of Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) by a next-generation sequencing-based transcriptome analysis. - J. Insect Sci. 15: 142, 6 pp.
Go to original source...
- Beesigamukama D., Subramanian S. & Tanga C.M. 2022: Nutrient quality and maturity status of frass fertilizer from nine edible insects. - Sci. Rep. 12: 7182, 13 pp.
Go to original source...
- Carroll A., Fitzpatrick M. & Hodge S. 2023: The effects of two organic soil amendments, biochar and insect frass fertilizer, on shoot growth of cereal seedlings. - Plants 12: 1071, 15 pp.
Go to original source...
- Cho Y. & Cho S. 2019: Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. - Sci. Rep. 9: 18066, 12 pp.
Go to original source...
- Cho Y. & Cho S. 2021: Characterization of the immune hemocyte in larvae of Dorcus titanus castanicolor (Motschulsky, 1861) (Lucanidae, Coleoptera). - Entomol. Res. 51: 445-452.
Go to original source...
- Cole J.N. & Nizet V. 2016: Bacterial evasion of host antimicrobial peptide defenses. - Microbiol Spectr. 4(1): 10.1128, 40 pp.
Go to original source...
- Czajkowski R., Perombelon M.C., van Veen J.A. & van der Wolf J.M. 2011: Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. - Plant Pathol. 60: 999-1013.
Go to original source...
- De Gregorio E., Spellman P.T., Tzou P., Rubin G.M. & Lemaitre B. 2002: The Toll and Imd pathways are the major regulators of the immune response in Drosophila. - EMBO J. 21: 2568-2579.
Go to original source...
- Diallo S., Latour X., Groboillot A., Smadja B., Copin P., Orange N., Feuilloley M.G.J. & Chevalier S. 2009: Simultaneous and selective detection of two major soft rot pathogens of potato: Pectobacterium atrosepticum (Erwinia carotovora subsp. atrosepticum) and Dickeya spp. (Erwinia chrysanthemi). - Eur. J. Plant Pathol. 125: 349-354.
Go to original source...
- Diamond G., Beckloff N., Weinberg A. & Kisich K.O. 2009: The roles of antimicrobial peptides in innate host defense. - Curr. Pharmaceut. Design 15: 2377-2392.
Go to original source...
- Dubovskiy I.M., Kryukova N.A., Glupov V.V. & Ratcliffe N.A. 2016: Encapsulation and nodulation in insects. - Invert. Surv. J. 13: 229-246.
- Fu Y.L. & Harrison R.E. 2021: Microbial phagocytic receptors and their potential involvement in cytokine induction in macrophages. - Front. Immunol. 12: 662063, 16 pp.
Go to original source...
- Go M.S., Cho Y., Park K.B., Kim M., Park S.S., Park J. & Cho S. 2022: Classification and characterization of immune haemocytes in the larvae of the Indian fritillary, Papilio hyperbius (Lepidopetra: Nymphalidae). - Eur. J. Entomol. 119: 430-438.
Go to original source...
- Ma B., Hibbing M.E., Kim H.S., Reedy R.M., Yedidia I., Breuer J., Breuer J., Glasner J.D., Perna N.T., Kelman A. et al. 2007: Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. - Phytopathology 97: 1150-1163.
Go to original source...
- Mahanta D.K., Bhoi T.K., Komal J., Samal I., Nikhil R.M., Paschapur A.U., Singh G., Kumar P.V.D., Desai H.R., Ahmad M.A., Singh P.P. et al. 2023: Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: Uncovering the underlying signaling pathways and immune regulatory function of Non-Coding RNAs. - Front. Immunol. 14: 1169152, 19 pp.
Go to original source...
- Hadizadeh I., Peivastegan B., Hannukkala A., Van der Wolf J.M., Nissinen R. & Pirhonen M. 2019: Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. - Plant Pathol. 68: 297-311.
Go to original source...
- Hillyer J.F. 2016: Insect immunology and hematopoiesis. - Devel. Compar. Immunol. 58: 102-118.
Go to original source...
- Hodge S. & Conway J. 2022: The effects of insect frass fertilizer and biochar on the shoot growth of chicory and plantain, two forage herbs commonly used in multispecies swards. - Agronomy 12: 2459, 14 pp.
Go to original source...
- Husak V.V. 2015: Copper and copper-containing pesticides: metabolism, toxicity and oxidative stress. - J. Vasyl Stefanyk Precarpathian Nat. Univ. 2: 38-50.
Go to original source...
- Hwang D., Jang Y. & Cho S. 2017: Morphological and immunological characterization of hemocytes in larvae of Pentodon quadridens bidentulus (Famaire, 1887). - Kor. J. Appl. Entomol. 56: 275-282.
Go to original source...
- Ilyasov R., Gaifullina L., Saltykova E., Poskryakov A. & Nikolenko A. 2012: Review of the expression of antimicrobial peptide defensin in honey bees L. - J. Apicult. Sci. 56: 115-124.
Go to original source...
- Kim H.S., Thammarat P., Lommel S.A., Hogan C.S. & Charkowski A.O. 2011: Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. - Mol. Plant-Microbe Interact. 24: 773-786.
Go to original source...
- Kinchen J.M. & Ravichandran K.S. 2008: Phagosome maturation: going through the acid test. - Nat. Rev. Mol. Cell Biol. 9: 781-795.
Go to original source...
- Kleino A., Valanne S., Ulvila J., Kallio J., Myllymäki H., Enwald H., Stöven S., Poidevin M., Ueda R., Hultmark D., et al. 2005: Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. - EMBO J. 24: 3423-3434.
Go to original source...
- Kwon H., Bang K. & Cho S. 2014: Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. - PLoS ONE 9: e103620, 12 pp.
Go to original source...
- Lancaster C.E., Fountain A., Dayam R.M., Somerville E., Sheth J., Jacobelli V., Somerville A., Terebiznik M.R. & Botelho R.J. 2021: Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. - J. Cell Biol. 220: e202005072, 26 pp.
Go to original source...
- Lavine M.D. & Strand M.R. 2002: Insect hemocytes and their role in immunity. - Insect Biochem. Mol. Biol. 32: 1295-1309.
Go to original source...
- Lee J., Hwang S. & Cho S. 2016: Immune tolerance to an intestine-adapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis. - Sci. Rep. 6: 31722, 14 pp.
Go to original source...
- Lee Y.H., Choi C.W., Kim S.H., Yun J.G., Chang S.W., Kim Y.S. & Hong J.K. 2012: Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. - Plant Pathol. J. 28: 32-39.
Go to original source...
- Lei J., Sun L., Huang S., Zhu C., Li P., He J., Mackey V., Coy D.H. & He Q. 2019: The antimicrobial peptides and their potential clinical applications. - Am. J. Translat. Res. 11: 3919-3931.
- Manniello M.D., Moretta A., Salvia R., Scieuzo C., Lucchetti D., Vogel H., Sgambato A. & Falabella P. 2021: Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. - Cell. Mol. Life Sci. 78: 4259-4282.
Go to original source...
- Mejía-Sánchez D., Aranda-Ocampo S., Nava-Díaz C., Teliz-Ortiz D., Livera-Muñoz M., De La Torre-Almaráz R. & Ramírez-Alarcón S. 2019: Pectobacterium carotovorum subsp. brasiliense causes soft rot and death of Neobuxbaumia tetetzo in Zapotitlan Salinas Valley, Puebla, Mexico. - Plant Dis. 103: 398-403.
Go to original source...
- Motyka A., Zoledowska S., Sledz W. & Lojkowska E. 2017: Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. - New Biotechnol. 39: 181-189.
Go to original source...
- Nowak D. & Jakubczyk E. 2020: The freeze-drying of foods: The characteristic of the process course and the effect of its parameters on the physical properties of food materials. - Foods 9: 1488, 27 pp.
Go to original source...
- Osdaghi E., Young A.J. & Harveson R.M. 2020: Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: A new threat from an old enemy. - Mol. Plant Pathol. 21: 605-621.
Go to original source...
- Parvy J.P., Yu Y., Dostalova A., Kondo S., Kurjan A., Bulet P., Lemaitre B., Vidal M. & Cordero J.B. 2019: The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. - eLife 8: e45061, 26 pp.
Go to original source...
- Ragland S.A. & Criss A.K. 2017: From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. - PLoS Pathog. 13: e1006512, 22 pp.
Go to original source...
- Satyavathi V.V., Minz A. & Nagaraju J. 2014: Nodulation: an unexplored cellular defense mechanism in insects. - Cell. Signall. 26: 1753-1763.
Go to original source...
- Sheehan G., Farrell G. & Kavanagh K. 2020: Immune priming: the secret weapon of the insect world. - Virulence 11: 238-246.
Go to original source...
- Vreugdenhil D., Bradshaw J., Gebhardt C., Govers F., MacKerron D.K.L., Taylor M.A. & Ross H.A. (eds) 2007: Potato Biology and Biotechnology. Advances and Perspectives. Elsevier, Oxford, Amsterdam, 823 pp.
- Wu Q., Patočka J. & Kuča K. 2018: Insect antimicrobial peptides, a mini review. - Toxins 10: 461, 17 pp.
Go to original source...
- Xia J., Ge C. & Yao H. 2021: Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. - Animals 11: 1937, 16 pp.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.