Eur. J. Entomol. 121: 83-97, 2024 | DOI: 10.14411/eje.2024.012

The expression pattern of immunity-related genes in the immunized black soldier fly, Hermetia illucens (Diptera: Stratiomyidae)Original article

Youngwoo CHO1, 2, Saeyoull CHO1, 2, *
1 Department of Applied Biology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Kangwon-do 200-701, South Korea; e-mails: saeyoullcho@kangwon.ac.kr, 5120057@kangwon.ac.kr
2 Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea

After immunizing black soldier fly (Hermetia illucens) larvae using Gram-negative (Escherichia coli) and Gram-positive (Bacillus thuringiensis, Bt) bacteria, we compared expression patterns across the whole genome. Compared to a control group treated with PBS buffer, the group immunized using Bt showed significant differences in the expression patterns of 2,312 genes. Similarly, the group immunized using E. coli showed significant differences in the expression patterns of 2,251 genes compared to the control. The groups immunized with E. coli and Bt both showed overexpression of genes involved in the extracellular region, serine-type endopeptidase activity, and neuropeptide signaling pathways, including genes related to the Toll pathway. In other words, the immune response of black soldier flies involves the simultaneous expression of innate immunity-related genes, irrespective of the type of bacteria. This is determined to be because, rather than showing a specific immune response, the flies depend on responding rapidly based on high expression levels.

Keywords: Immune response, gene expression, next-generation sequencing, Escherichia coli, Bacillus thuringiensis

Received: September 13, 2023; Revised: February 21, 2024; Accepted: February 21, 2024; Published online: March 22, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
CHO, Y., & CHO, S. (2024). The expression pattern of immunity-related genes in the immunized black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). EJE121, Article 83-97. https://doi.org/10.14411/eje.2024.012
Download citation

References

  1. Aggarwal K. & Silverman N. 2008: Positive and negative regulation of the Drosophila immune response. - BMB Reports 41: 267-277. Go to original source...
  2. Alejandro A.D., Lilia J.P., Jesús M.B. & Henry R.M. 2022: The IMD and Toll canonical immune pathways of Triatoma pallidipennis are preferentially activated by gram-negative and gram-positive bacteria, respectively, but cross-activation also occurs. - Parasites Vectors 15: 256, 13 pp. Go to original source...
  3. Anderson K.V. 2000: Toll signaling pathways in the innate immune response. - Curr. Opin. Immunol. 12: 13-19. Go to original source...
  4. Bang K., Park S. & Cho S. 2013: Characterization of a β-1, 3-glucan recognition protein from the beet armyworm, Spodo­ptera exigua (Insecta: Lepidoptera: Noctuidae). - Insect Sci. 20: 575-584. Go to original source...
  5. Buonocore F., Fausto A.M., Della Pelle G., Roncevic T., Gerdol M. & Picchietti S. 2021: Attacins: A promising class of insect antimicrobial peptides. - Antibiotics 10: 212, 12 pp. Go to original source...
  6. Castillo J.C., Creasy T., Kumari P., Shetty A., Shokal U., Tallon L.J. & Eleftherianos I. 2015: Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq. - BMC Genomics 16: 1-21. Go to original source...
  7. Cho Y. & Cho S. 2019: Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. - Sci. Rep. 9: 18066, 12 pp. Go to original source...
  8. Cho Y. & Cho S. 2021: Characterization of the immune hemocyte in larvae of Dorcus titanus castanicolor (Motschulsky, 1861)(Lucanidae, Coleoptera). - Entomol. Res. 51: 445-452. Go to original source...
  9. Cooper D. & Eleftherianos I. 2017: Memory and specificity in the insect immune system: current perspectives and future challenges. - Front. Immunol. 8: 539, 6 pp. Go to original source...
  10. De Gregorio E., Spellman P.T., Tzou P., Rubin G.M. & Lemaitre B. 2002: The Toll and Imd pathways are the major regulators of the immune response in Drosophila. - EMBO J. 21: 2568-2579. Go to original source...
  11. Dubovskiy I.M., Kryukova N.A., Glupov V.V. & Ratcliffe N.A. 2016: Encapsulation and nodulation in insects. - Invert. Surv. J. 13: 229-246.
  12. El Moussawi L., Nakhleh J., Kamareddine L. & Osta M.A. 2019: The mosquito melanization response requires hierarchical activation of non-catalytic clip domain serine protease homologs. - PLoS Pathogens 15: e1008194, 19 pp. Go to original source...
  13. Eleftherianos I., Heryanto C., Bassal T., Zhang W., Tettamanti G. & Mohamed A. 2021: Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. - Immunology 164: 401-432. Go to original source...
  14. Go M.S., Cho Y., Park K.B., Kim M., Park S.S., Park J. & Cho S. 2022: Classification and characterization of immune haemocytes in the larvae of the Indian fritillary, Papilio hyperbius (Lepidopetra: Nymphalidae). - Eur. J. Entomol. 119: 430-438. Go to original source...
  15. González-Santoyo I. & Córdoba-Aguilar A. 2012: Phenoloxidase: a key component of the insect immune system. - Entomol. Exp. Appl. 142: 1-16. Go to original source...
  16. Greenwood J.M., Milutinoviæ B., Peuß R., Behrens S., Esser D., Rosenstiel P., Schulenburg H. & Kurtz J. 2017: Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. - BMC Genomics 18: 1-14. Go to original source...
  17. Gomes F.M., Silva M., Molina-Cruz A. & Barillas-Mury C. 2022: Molecular mechanisms of insect immune memory and pathogen transmission. - PLoS Pathogens 18: e1010939, 11 pp. Go to original source...
  18. Hoffmann J.A. 2003: The immune response of Drosophila. - Nature 426: 33-38. Go to original source...
  19. Hoffmann J.A. & Reichhart J.M. 2002: Drosophila innate immunity: an evolutionary perspective. - Nature Immunol. 3: 121-126. Go to original source...
  20. Janeway Jr C.A. & Medzhitov R. 2002: Innate immune recognition. - Annu. Rev. Immunol. 20: 197-216. Go to original source...
  21. Jensen H., Elleby C., Domínguez I.P., Chatzopoulos T. & Charlebois P. 2021: Insect-based protein feed: From fork to farm. - J. Insects Food Feed 7: 1219-1233. Go to original source...
  22. Kleino A. & Silverman N. 2014: The Drosophila IMD pathway in the activation of the humoral immune response. - Devel. Compar. Immunol. 42: 25-35. Go to original source...
  23. Kryukov V.Yu., Chernyak E.I., Kryukova N., Tyurin M., Krivopalov A., Yaroslavtseva O., Senderskiy I., Polenogova O., Zhirakovskaia E., Glupov V.V. & Morozov S.V. 2022: Parasitoid venom alters the lipid composition and development of microorganisms on the wax moth cuticle. - Entomol. Exp. Appl. 170: 852-868. Go to original source...
  24. Kuraishi T., Binggeli O., Opota O., Buchon N. & Lemaitre B. 2011: Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. - Proc. Natn. Acad. Sci. 108: 15966-15971. Go to original source...
  25. Kwon H., Bang K. & Cho S. 2014: Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. - PLoS ONE 9: e103620, 12 pp. Go to original source...
  26. Lavine M.D. & Strand M.R. 2002: Insect hemocytes and their role in immunity. - Insect Biochem. Mol. Biol. 32: 1295-1309. Go to original source...
  27. Ma L., Liu L., Zhao Y., Yang L., Chen C., Li Z. & Lu Z. 2020: JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. - PLoS Pathogens 16: e1008627, 24 pp. Go to original source...
  28. Mahanta D.K., Bhoi T.K., Komal J., Samal I., Nikhil R.M., Paschapur A.U., Singh G., Kumar P.V.D., Desai H.R., Ahmad M.A., Singh P.P., Majhi P.K., Mukherjee U., Singh V., Shahanaz, Srinivasa N. & Yele Y. 2023: Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. - Front. Immunol. 14: 2023, 19 pp. Go to original source...
  29. Marmaras V.J., Charalambidis N.D. & Zervas C.G. 1996: Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. - Arch. Insect Biochem. Physiol. 31: 119-133. Go to original source...
  30. Mondotte J.A., Gausson V., Frangeul L., Suzuki Y., Vazeille M., Mongelli V., Blanc H., Failloux A.B. & Saleh M.C. 2020: Evidence for long-lasting transgenerational antiviral immunity in insects. - Cell Reports 33: 108506, 19 pp. Go to original source...
  31. Mortazavi A., Williams B.A., McCue K., Schaeffer L. & Wold B. 2008: Mapping and quantifying mammalian transcriptomes by RNA-Seq. - Nature Meth. 5: 621-628. Go to original source...
  32. Myllymäki H., Valanne S. & Rämet M. 2014: The Drosophila imd signaling pathway. - J. Immunol. 192: 3455-3462. Go to original source...
  33. Nishide Y., Kageyama D., Yokoi K., Jouraku A., Tanaka H., Futahashi R. & Fukatsu T. 2019: Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. - Proc. R. Soc. (B) 286: 2018-2207. Go to original source...
  34. Palma L., Muñoz D., Berry C., Murillo J. & Caballero P. 2014: Bacillus thuringiensis toxins: an overview of their biocidal activity. - Toxins 6: 3296-3325. Go to original source...
  35. Park J.Y., Kwak K.W., Choi J.Y., Lee S.E., Kim Y.S., Koo B., Kim E., Park K. & Kim S.Y. 2021: Ethanol extract of Hermetia illucens larvae inhibits adipogenesis in 3T3-L1 adipocytes. - J. Life Sci. 31: 1094-1099.
  36. Paskewitz S.M., Reese-Stardy S. & Gorman M.J. 1999: An easter-like serine protease from Anopheles gambiae exhibits changes in transcript abundance following immune challenge. - Insect Mol. Biol. 8: 329-337. Go to original source...
  37. Patel S. 2017: A critical review on serine protease: key immune manipulator and pathology mediator. - Allergol. Immunopathol. 45: 579-591. Go to original source...
  38. Sousa G.L., Bishnoi R., Baxter R.H. & Povelones M. 2020: The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae. - PLoS Pathogens 16: e1008985, 29 pp. Go to original source...
  39. Stamer A. 2015: Insect proteins - a new source for animal feed: The use of insect larvae to recycle food waste in high-quality protein for livestock and aquaculture feeds is held back largely owing to regulatory hurdles. - EMBO Rep. 16: 676-680. Go to original source...
  40. Strand M.R. 2008: The insect cellular immune response. - Insect Sci. 15: 1-14. Go to original source...
  41. Tanji T., Hu X., Weber A.N. & Ip Y.T. 2007: Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. - Mol. Cell. Biol. 27: 4578-4588. Go to original source...
  42. Tomberlin J.K. & Van Huis A. 2020: Black soldier fly from pest to 'crown jewel' of the insects as feed industry: an historical perspective. - J. Insects Food Feed 26: 1-4. Go to original source...
  43. Valanne S., Wang J.H. & Rämet M. 2011: The Drosophila toll signaling pathway. - J. Immunol. 186: 649-656. Go to original source...
  44. Vogel H., Müller A., Heckel D.G., Gutzeit H. & Vilcinskas A. 2018: Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. - Devel. Compar. Immunol. 78: 141-148. Go to original source...
  45. Wang Y.S. & Shelomi M. 2017: Review of black soldier fly (Hermetia illucens) as animal feed and human food. - Foods 6: 91, 23 pp. Go to original source...
  46. Wang H.C., Wang Q.H., Bhowmick B., Li Y.X. & Han Q. 2021: Functional characterization of two clip domain serine proteases in innate immune responses of Aedes aegypti. - Parasites Vectors 14: 1-13. Go to original source...
  47. Yokoi K., Ito W., Kato D. & Miura K. 2022: RNA interference-based characterization of Caspar, DREDD and FADD genes in immune signaling pathways of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). - Eur. J. Entomol. 119: 23-35. Go to original source...
  48. Zhang H., Yang K., Wang H., Liu H., Shi W., Kabak L., Ji R. & Hu H. 2023: Molecular and biochemical changes in Locusta migratoria (Orthoptera: Acrididae) infected with Paranosema locustae. - J. Insect Sci. 23: 1, 8 pp. Go to original source...
  49. Zhao X., Smartt C.T., Li J. & Christensen B.M. 2001: Aedes aegypti peroxidase gene characterization and developmental expression. - Insect Biochem. Mol. Biol. 31: 481-490. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.