Eur. J. Entomol. 121: 67-72, 2024 | DOI: 10.14411/eje.2024.010

Using citizen science data to compare flight phenology of two oligolectic bees (Hymenoptera: Andrenidae) with the flowering of their host plantsOriginal article

Per MILBERG, Anna PALM
IFM Biology, Conservation Ecology Group, Linköping University, 581 83 Linköpings, Sweden; e-mails: per.milberg@liu.se, annpa815@student.liu.se

Understanding the relationship between solitary bee flight and flowering phenology is globally relevant for environmental management and habitat restoration. Using Swedish citizen science data over an 11-year period, the flight behaviours of two oligolectic solitary bees (Andrena hattorfiana and Andrena marginata) were compared to the flowering phenology of their hosts (Knautia arvensis and Succisa pratensis) in southern Sweden. There were 2,327 and 4,566 records of flight and flowering, respectively. While associative studies cannot resolve the degree of oligolecty, a strong temporal association of Andrena hattorfiana with Knautia arvensis and Andrena marginata with Succisa pratensis was indicated. Three conclusions emerged when comparing annual data: first, the flight period of both bee species studied overlapped with the flowering period of their corresponding host plants. Second, earlier flowering of Knautia arvensis corresponded with the earlier flight of Andrena hattorfiana. Third, the flight period duration was unaffected by the flowering period duration. For Andrena hattorfiana/Knautia arvensis, climate change may shift the start of flight and flowering periods to earlier dates in the year. A similar response would be expected for Andrena marginata/Knautia arvensis, but not for Andrena marginata/Succisa pratensis where there instead might be an increasing mismatch between the flight and flowering periods.

Keywords: Apoidea, flowering phenology, flower visiting, solitary bee

Received: September 22, 2023; Revised: February 7, 2024; Accepted: February 7, 2024; Published online: March 18, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
MILBERG, P., & PALM, A. (2024). Using citizen science data to compare flight phenology of two oligolectic bees (Hymenoptera: Andrenidae) with the flowering of their host plants. EJE121, Article 67-72. https://doi.org/10.14411/eje.2024.010
Download citation

References

  1. Adams A.W. 1955: Succisa pratensis Moench. - J. Ecol. 43: 709-718. Go to original source...
  2. Ayers A.C. & Rehan S.M. 2021: Supporting bees in cities: How bees are influenced by local and landscape features. - Insects 12: 128, 18 pp. Go to original source...
  3. Bartomeus I., Ascher J.S., Wagner D., Danforth B.N., Colla S., Kornbluth S. & Winfree R. 2011: Climate-associated phenological advances in bee pollinators and bee-pollinated plants. - Proc. Natn. Acad. Sci. U.S.A. 108: 20645-20649. Go to original source...
  4. Benadi G., Hovestadt T., Poethke H.J. & Blüthgen N. 2014: Specialization and phenological synchrony of plant-pollinator interactions along an altitudinal gradient. - J. Anim. Ecol. 83: 639-650. Go to original source...
  5. Blasi M., Carrié R., Fägerström C., Svensson E. & Persson A.S. 2023: Historical and citizen-reported data show shifts in bumblebee phenology over the last century in Sweden. - Biodiv. Conserv. 32: 1523-1547. Go to original source...
  6. Bradter U., Mair L., Jönsson M., Knape J., Singer A. & Snäll T. 2018: Can opportunistically collected Citizen Science data fill a data gap for habitat suitability models of less common species? - Meth. Ecol. Evol. 9: 1667-1678. Go to original source...
  7. Brooks S., Self A., Toloni F. & Sparks T. 2014: Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. - Int. J. Biometeorol. 58: 1749-1758. Go to original source...
  8. Brooks S.J., Self A., Powney G.D., Pearse W.D., Penn M. & Paterson G.L.J. 2017: The influence of life history traits on the phenological response of British butterflies to climate variability since the late-19th century. - Ecography 40: 1152-1165. Go to original source...
  9. Cane J.H. 2021: A brief review of monolecty in bees and benefits of a broadened definition. - Apidologie 52: 17-22. Go to original source...
  10. Cho L.H., Yoon J. & An G. 2017: The control of flowering time by environmental factors. - Plant J. 90: 708-719. Go to original source...
  11. Danforth B.N., Cardinal S., Praz C., Almeida E.A. & Michez D. 2013: The impact of molecular data on our understanding of bee phylogeny and evolution. - Annu. Rev. Entomol. 58: 57-78. Go to original source...
  12. Dharampal P.S., Hetherington M.C. & Steffan S.A. 2020: Microbes make the meal: oligolectic bees require microbes within their host pollen to thrive. - Ecol. Entomol. 45: 1418-1427. Go to original source...
  13. Duchenne F., Thébault E., Michez D., Elias M., Drake M., Persson M., Rousseau-Piot J.S., Pollet M., Vanormelingen P. & Fontaine C. 2020: Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. - Nature Ecol. Evol. 4: 115-121. Go to original source...
  14. Forrest J.R.K. 2016: Complex responses of insect phenology to climate change. - Curr. Opin. Insect Sci. 17: 49-54. Go to original source...
  15. Franzén M. & Nilsson S.G. 2008: How can we preserve and restore species richness of pollinating insects on agricultural land? - Ecography 31: 698-708. Go to original source...
  16. Franzén M. & Larsson M. 2009: Seed set differs in relation to pollen and nectar foraging flower visitors in an insect-pollinated herb. - Nordic J. Bot. 27: 274-283. Go to original source...
  17. Freimuth J., Bossdorf O., Scheepens J.F. & Willems F.M. 2022: Climate warming changes synchrony of plants and pollinators. - Proc. R. Soc. (B) 289: 20212142, 9 pp. Go to original source...
  18. Gallagher M.K. & Campbell D.R. 2020: Pollinator visitation rate and effectiveness vary with flowering phenology. - Am. J. Bot. 107: 445-455. Go to original source...
  19. Hegland S.J., Nielsen A., Lázaro A., Bjerknes A.-L. & Totland Ø. 2009: How does climate warming affect plant-pollinator interactions? - Ecol. Lett. 12: 184-195. Go to original source...
  20. Holmström G., Hall K., Berg A. & Johansson N. 2018a: Andrena - sandbin. URL: https://artfakta.se/naturvard/taxon/andrena-marginata-102671 (last accessed 9 Dec. 2023).
  21. Holmström G., Hall K., Berg A. & Johansson N. 2018b: Andrena - sandbin. URL: https://artfakta.se/naturvard/taxon/andrena-hattorfiana-102668 (last accessed 9 Dec. 2023).
  22. Iler A.M., Inouye D.W., Høye T.T., Miller-Rushing A.J., Burkle L.A. & Johnston E.B. 2013: Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. - Glob. Change Biol. 19: 2348-2359. Go to original source...
  23. IPCC 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri R.K. & Meyer L.A. (eds)]. IPCC, Geneva, 151 pp.
  24. Kehrberger S. & Holzschuh A. 2019: Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species. - PLoS ONE 14: e0218824, 15 pp. Go to original source...
  25. Kharouba H.M., Ehrlén J., Gelman A., Blomgren K., Allen J.M., Travers S.E. & Wolkovich E.M. 2018: Global shifts in the phenological synchrony of species interactions over recent decades. - Proc. Natn. Acad. Sci. U.S.A. 115: 5211-5216. Go to original source...
  26. Larkin L.L., Neff J.L. & Simpson B.B. 2008: The evolution of a pollen diet: host choice and diet breadth of Andrena bees (Hymenoptera: Andrenidae). - Apidologie 39: 133-145. Go to original source...
  27. Larsson M. 2005: Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae). - Oecologia 146: 394-403. Go to original source...
  28. López-Guillén E., Herrera I., Bensid B., Gómez-Bellver C., Ibáñez N., Jiménez-Mejías P., Mairal M., Mena-García L., Nualart N., Utjés-Mascó M. & López-Pujol J. 2024: Strengths and challenges of using iNaturalist in plant research with focus on data quality. - Diversity 16: 42, 22 pp. Go to original source...
  29. Lunau K. 2004: Adaptive radiation and coevolution: pollination biology case studies. - Organisms Divers. Evol. 4: 207-224. Go to original source...
  30. Ogilvie J.E., Griffin S.R., Gezon Z.J., Inouye B.D., Underwood N., Inouye D.W. & Irwin R.E. 2017: Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. - Ecol. Letters 20: 1507-1515. Go to original source...
  31. Ollerton J., Winfree R. & Tarrant S. 2011: How many flowering plants are pollinated by animals? - Oikos 120: 321-326. Go to original source...
  32. Olliff-Yang R.L. & Mesler M.R. 2018: The potential for phenological mismatch between a perennial herb and its ground-nesting bee pollinator. - AoB Plants 10: ply040, 11 pp. Go to original source...
  33. Pekkarinen A. 1997: Oligolectic bee species in Northern Europe (Hymenoptera, Apoidea). - Entomol. Fenn. 8: 205-214. Go to original source...
  34. Plant J.D. & Paulus H.F. 2016: Evolution and Phylogeny of Bees. Review and Cladistic Analysis in Light of Morphological Evidence (Hymenoptera: Apoidea). Zoologica 161. Schweizerbart Science Publishers, Stuttgart, 364 pp.
  35. Praz C.J., Müller A. & Dorn S. 2008: Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. - Ecology 89: 795-804. Go to original source...
  36. Ratnieks F.L., Schrell F., Sheppard R.C., Brown E., Bristow O.E. & Garbuzov M. 2016: Data reliability in citizen science: learning curve and the effects of training method, volunteer background and experience on identification accuracy of insects visiting ivy flowers. - Meth. Ecol. Evol. 7: 1226-1235. Go to original source...
  37. Schäffler I. & Dötterl S. 2011: A day in the life of an oil bee: phenology, nesting, and foraging behavior. - Apidologie 42: 409-424. Go to original source...
  38. Schlindwein C. 2004: Are oligolectic bees always the most effective pollinators. In Freitas B.M. & Pereira J.O.P (eds): Solitary Bees: Conservation, Rearing and Management for Pollination. Universidade Federal do Ceará, Fortaleza, pp. 231-240.
  39. Snäll T., Kindvall O., Nilsson J. & Pärt T. 2011: Evaluating citizen-based presence data for bird monitoring. - Biol. Conserv. 144: 804-810. Go to original source...
  40. Varga S., Soulsbury C.D. & John E.A. 2022: Biological flora of Britain and Ireland: Knautia arvensis. - J. Ecol. 110: 1970-1992. Go to original source...
  41. Villagomez G.N., Nürnberger F., Requier F., Schiele S. & Steffan-Dewenter I. 2021: Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. - Ecol. Evol. 11: 7834-7849. Go to original source...
  42. Wang X., Zhou P., Huang R., Zhang J. & Ouyang X. 2021: A daylength recognition model of photoperiodic flowering. - Front. Plant Sci. 12: 778515, 11 pp. Go to original source...
  43. Westrich P. 1990: Die Wildbienen Baden-Württembergs I + II. Eugen Ulmer, Stuttgart 972 pp,
  44. Wyver C., Potts S.G., Edwards M., Edwards R., Roberts S. & Senapathi D. 2023: Climate-driven phenological shifts in emergence dates of British bees. - Ecol. Evol. 13: e10284, 10 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.