Eur. J. Entomol. 119: 448-453, 2022 | DOI: 10.14411/eje.2022.047

The role of 10-hydroxy-Δ2-decenoic acid in the formation of fibrils of the major royal jelly protein 1/apisimin/24-methylenecholesterol complex isolated from honey bee (Apis mellifera) royal jellyOriginal article

Anja BUTTSTEDT ORCID...1, 2
1 B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; e-mail: anja.buttstedt@gmail.com
2 Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa

Queen larvae of the honey bee (Apis mellifera) are fed with royal jelly, a glandular secretion produced by the hypopharyngeal and mandibular glands of worker honey bees. The necessary consistency of royal jelly is dependent on a protein-sterol complex (MRJP14/apisimin4/24MC8). At low pH, this complex forms fibrillar structures, which increase the viscosity of royal jelly. While the proteins in this complex are produced in the hypopharyngeal gland, the low pH is achieved by the secretion of the mandibular gland, which contains fatty acids. It is shown for the first time that fibril formation of MRJP14/apisimin4/24MC8 is not only induced by low pH via a buffer system, but also by the addition of the major fatty acid 10-hydroxy-Δ2-decenoic acid (10-HDA) of the mandibular gland secretion. This result further substantiates that fibril formation of the MRJP14/apisimin4/24MC8 complex only occurs after mixing the hypopharyngeal and mandibular gland secretions.

Keywords: Hymenoptera, Apidae, queen rearing, food jelly, mandibular gland, hypopharyngeal gland, 10-HDA, MRJP1

Received: August 22, 2022; Revised: December 5, 2022; Accepted: December 5, 2022; Published online: December 14, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
BUTTSTEDT, A. (2022). The role of 10-hydroxy-Δ2-decenoic acid in the formation of fibrils of the major royal jelly protein 1/apisimin/24-methylenecholesterol complex isolated from honey bee (Apis mellifera) royal jelly. EJE119, Article 448-453. https://doi.org/10.14411/eje.2022.047
Download citation

Attachments

Download fileS1.pdf

File size: 400.75 kB

References

  1. Aristotle (350 BCE): Historia Animalium. 1965, Eds Henderson J. & Peck A.L. Harvard University Press, Cambridge, MA & London.
  2. Barker S.A., Foster A.B., Lamb D.C. & Hodgson D.C. 1959: Identification of 10-hydroxy-Δ2-decenoic acid in royal jelly. - Nature 183: 996-997. Go to original source...
  3. Blum M.S., Novak A.F. & Taber S. 1959: 10-hydroxy-2-decenoic acid, an antibiotic found in royal jelly. - Science 130: 452-453. Go to original source...
  4. Buttstedt A., Ihling C.H., Pietzsch M. & Moritz R.F.A. 2016: Royalactin is not a royal making of a queen. - Nature 537: E10-E12. Go to original source...
  5. Buttstedt A., Mureºan C.I., Lilie H., Hause G., Ihling C.H., Schulze S.-H., Pietzsch M. & Moritz R.F.A. 2018: How honeybees defy gravity with royal jelly to raise queens. - Curr. Biol. 28: 1095-1100. Go to original source...
  6. Callow R.K., Johnston N.C. & Simpson J. 1959: 10/-Hydroxy-Δ2-decenoic acid in the honey bee (Apis mellifera). - Experientia 15: 421-422. Go to original source...
  7. Crewe R.M. & Velthuis H.H.W. 1980: False queens: A consequence of mandibular gland signals in worker honeybees. - Naturwissenschaften 67: 467-469. Go to original source...
  8. Deseyn J. & Billen J. 2005: Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). - Apidologie 36: 49-57. Go to original source...
  9. Ferioli F., Marcazzan G.L. & Caboni M.F. 2007: Determination of (E)-10-hydroxy-2-decenoic acid content in pure royal jelly: A comparison between a new CZE method and HPLC. - J. Separ. Sci. 30: 1061-1069. Go to original source...
  10. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D. & Bairoch A. 2005: Protein identification and analysis tools on the ExPASy server. In Walker J.M. (ed.): The Proteomics Protocols Handbook. Humana Press, Totowa, NJ, pp. 571-607. Go to original source...
  11. Grimsley G.R., Scholtz J.M. & Pace C.N. 2009: A summary of the measured pK values of the ionizable groups in folded proteins. - Protein Sci. 18: 247-251. Go to original source...
  12. Hoffmann I. 1960: Untersuchungen über die Herkunft des Königinnenfuttersaftes der Honigbienen. - Z. Bienenforsch. 5: 101-111 [in German].
  13. Isidirov V.A., Bakier S. & Grzech I. 2012: Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. - J. Chromatogr. (B) 885/886: 109-116. Go to original source...
  14. Kamakura M., Fukuda T., Fukushima M. & Yonekura M. 2001: Storage-dependent degradation of 57-kDa protein in royal jelly: a possible marker for freshness. - Biosci. Biotechnol. Biochem. 65: 277-284. Go to original source...
  15. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J. & Bolton E.A. 2021: PubChem in 2021: new data content and improved web interfaces. - Nucl. Acids Res. 49: D1388-D1395. Go to original source...
  16. Kinoshita G. & Shuel R.W. 1975: Mode of action of royal jelly in honeybee development. X. Some aspects of lipid nutrition. - Can. J. Zool. 53: 311-319. Go to original source...
  17. Kratky E. 1931: Morphologie und Physiologie der Drüsen in Kopf und Thorax der Honigbiene (Apis mellifica L.). - Z. Wissenschaftl. Zool. 139: 119-200 [in German].
  18. Kurth T., Kretschmar S. & Buttstedt A. 2019: Royal jelly in focus. - Insectes Soc. 66: 81-89. Go to original source...
  19. Laemmli U.K. 1970: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680-685. Go to original source...
  20. Lercker G., Capella P., Conte L.S., Ruini F. & Giordani G. 1981: Components of royal jelly: I. Identification of the organic acids. - Lipids 16: 912-919. Go to original source...
  21. Liu T.P. 1990: Ultrastructural analysis on the gland secretion in the extracellular ducts of the hypopharyngeal glands of the honeybee infected by Nosema apis. - Tissue Cell 22: 533-540. Go to original source...
  22. Majtan J., Kumar P., Majtan T., Walls A.F. & Klaudiny J. 2010: Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. - Exp. Dermatol. 19: e73-e79. Go to original source...
  23. Mandacaru S.C., do Vale L.H.F., Vahidi S., Xiao Y., Skinner O.S., Ricart C.A.O., Kelleher N.L., de Sousa M.V. & Koner­mann L. 2017: Characterizing the structure and oligomerization of major royal jelly protein 1 (MRJP1) by mass spectrometry and complementary biophysical tools. - Biochemistry 56: 1645-1655. Go to original source...
  24. Mattei S., Ban A., Picenoni A., Leibundgut M., Glockshuber R. & Boehringer D. 2020: Structure of native glycolipoprotein filaments in honeybee royal jelly. - Nature Commun. 11: 6267, 7 pp. Go to original source...
  25. Mokaya H.O., Njeru L.K. & Lattorff H.M.G. 2020: African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. - Food Biosci. 37: 100733, 6 pp. Go to original source...
  26. Moriyama T., Ito A., Omote S., Miura Y. & Tsumoto H. 2015: Heat resistant characteristics of major royal jelly protein 1 (MRJP1) oligomer. - PLoS ONE 10: e0119196, 17 pp. Go to original source...
  27. Mumoki F.N. & Crewe R.M. 2021: Pheromone communication in honey bees (Apis mellifera). In Blomquist G.J. & Vogt R.G. (eds): Insect Pheromone Biochemistry and Molecular Biology. Academic Press, Elsevier, London, San Diego, Cambridge (MA), Oxford, pp. 183-236. Go to original source...
  28. Nelson D.L. & Cox M.M. 2004: Chapter 10: Lipids. In Nelson D.L. & Cox M.M. (eds): Lehninger Principles of Biochemistry. Macmillan Learning, New York, pp. 343-368.
  29. Nozaki R., Tamura S., Ito A., Moriyama T., Yamaguchi K. & Kono T. 2012: A rapid method to isolate soluble royal jelly proteins. - Food Chem. 134: 2332-2337. Go to original source...
  30. Patel N.G., Haydak M.H. & Gochnauer T.A. 1960: Electrophoretic components of the proteins in honey bee larval food. - Nature 186: 633-634. Go to original source...
  31. Pavel C.I., Mãrghitaº L.A., Dezmirean D.S., Tomoº L.I., Bonta V., ªapcaliu A. & Buttstedt A. 2014: Comparison between local and commercial royal jelly - use of antioxidant activity and 10-hydroxy-2-decenoic acid as quality parameter. - J. Apic. Res. 53: 116-123. Go to original source...
  32. Pirk C.W.W. 2018: Honeybee evolution: Royal proteins help queen larvae to stay on top. - Curr. Biol. 28: R350-R351. Go to original source...
  33. Plettner E., Slessor K.N., Winston M.L. & Oliver J.E. 1996: Caste-selective pheromone biosynthesis in honeybees. - Science 127: 1851-1853. Go to original source...
  34. Quast K. 2016: The use of zeta potential to investigate the pKa of saturated fatty acids. - Adv. Powder Technol. 27: 207-214. Go to original source...
  35. Rembold H. 1983: Royal jelly. In Ruttner F. (ed.): Queen Rearing. Apimondia, Bucharest, pp. 35-41.
  36. Sabatini A.G., Marcazzan G.L., Caboni M.F., Bogdanov S. & de Almeida-Muradian L.B. 2009: Quality and standardisation of royal jelly. - J. ApiProduct ApiMed. Sci. 1: 1-6. Go to original source...
  37. Schiemenz P. 1883: Über das Herkommen des Futtersaftes und die Speicheldrüsen der Biene nebst einem Anhange über das Riechorgan. - Z. Wissenschaftl. Zool. 38: 71-135 [in German].
  38. ©imúth J. 2001: Some properties of the main protein of honeybee (Apis mellifera) royal jelly. - Apidologie 32: 69-80. Go to original source...
  39. Spannhoff A., Kim Y.K., Raynal N.J.M., Gharibyan V., Su M.B., Zhou Y.Y., Li J., Castellano S., Sbardella G., Issa J.P.J. & Bedford M.T. 2011: Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. - EMBO Reports 12: 238-243. Go to original source...
  40. Tamura S., Kono T., Harada C., Yamaguchi K. & Moriyama T. 2009: Estimation and characterization of major royal jelly proteins obtained from the honeybee Apis merifera. - Food Chem. 114: 1491-1497. Go to original source...
  41. Tian W., Li M., Guo H., Peng W., Xue X., Hu Y., Liu Y., Zhao Y., Fang X., Wang K., Li X.,Tong Y., Conlon M.A., Wu W., Ren F. & Chen Z. 2018: Architecture of the native major royal jelly protein 1 oligomer. - Nature Commun. 9: 3373, 12 pp. Go to original source...
  42. Townsend G.F. & Lucas C.C. 1940: The chemical nature of royal jelly. - Biochem. J. 34: 1155-1162. Go to original source...
  43. Von Planta A. 1888: Über den Futtersaft der Bienen. - Hoppe-Seyler's Z. Physiol. Chem. 12: 327-354 [in German]. Go to original source...
  44. Xu X. & Gao Y. 2013: Isolation and characterization of proteins and lipids from honeybee (Apis mellifera L.) queen larvae and royal jelly. - Food Res. Int. 54: 330-337. Go to original source...
  45. Yamaguchi K., He S., Li Z., Murata K., Hitomi N., Mozumi M., Ariga R. & Enomoto T. 2013: Quantification of major royal jelly protein 1 in fresh royal jelly by indirect enzyme-linked immunosorbent assay. - Biosci. Biotechnol. Biochem. 77: 1310-1312. Go to original source...
  46. Yousefi B., Ghaderi S., Rezapoor-Lactooyi A., Amiri N., Verdi J. & Shoae-Hassani A. 2012: Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces. - Ann. Clinic. Microbiol. Antimicrob. 11: 21, 7 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.