Eur. J. Entomol. 119: 215-226, 2022 | DOI: 10.14411/eje.2022.023

Evolutionary and ecological signals in Wolbachia-beetle relationships: A reviewReview

£ukasz KAJTOCH ORCID...
Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, S³awkowska 17 St., 31-016 Kraków, Poland; e-mail: lukasz.kajtoch@gmail.com

Intracellular bacteria of the genus Wolbachia are the most abundant endosymbionts infecting many arthropods, with Coleoptera being the most diverse hosts in terms of taxonomy and ecology. There has been great progress in studies on the relations between Wolbachia and beetles, however, only some of the research details the consequences of infection. In this review, I summarise the knowledge on the evolutionary relations or ecological associations between Wolbachia and its beetle hosts. These bacteria often cause cytoplasmic incompatibility in the infected hosts and are responsible for a selective sweep of the mitochondrial genomes in some beetles. Wolbachia can manipulate the sex ratio or reproduction of some species of beetles, however, it does not induce parthenogenesis, with the possible rare exception of some Naupactini. Proof of the co-evolution of Wolbachia with beetles is missing, but some aquatic groups seem to be prone to co-speciation, unlike terrestrial taxa. On the other hand, there is a growing number of studies indicating or proving horizontal transmission of Wolbachia among beetle hosts, mostly via common host plants or the foraging substrate (such as dung). Wolbachia is not alone in infecting beetles as other endosymbiotic bacteria occur in beetles (Rickettsia, Spiroplasma, Cardinium, Arsenophorus), which have often been reported as interchangeable, suggesting the infection by various bacteria is dynamic. Nonetheless, there are still many issues associated with Wolbachia that are not yet been described in beetles (like the provision of nutrition or protection against pathogens) and high-throughput sequencing should be used to improve our understanding of Wolbachia-Coleoptera relations.

Keywords: Coleoptera, bacteria, endosymbionts, male-killers, co-evolution, horizontal transmission

Received: March 29, 2022; Revised: May 20, 2022; Accepted: May 20, 2022; Published online: June 17, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
KAJTOCH, £. (2022). Evolutionary and ecological signals in Wolbachia-beetle relationships: A review. EJE119, Article 215-226. https://doi.org/10.14411/eje.2022.023
Download citation

References

  1. Adekunle A.I., Meehan M.T. & McBryde E.S. 2019: Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection. - Infect. Dis. Model. 4: 265-285. Go to original source...
  2. Bailly-Bechet M., Martins-Simões P., Szöllosi G.J., Mialdea G., Sagot M.F. & Charlat S. 2017: How long does Wolbachia remain on board? - Mol. Biol. Evol. 34: 1183-1193. Go to original source...
  3. Bili M., Cortesero A.M., Mougel C., Gauthier J.P., Ermel G., Simon J.C., Outreman Y., Terrat S., Mahéo F. & Poinsot D. 2016: Bacterial community diversity harboured by interacting species. - PLoS ONE 11: e0155392, 23 pp. Go to original source...
  4. Bové J.M. 1997: Spiroplasmas: infectious agents of plants, arthropods and vertebrates. - Wien. Klin. Wochenschr. 109: 604-612.
  5. Braquart-Varnier C., Altinli M., Pigeault R., Chevalier F.D., Grève P., Bouchon D. & Sicard M. 2015: The mutualistic side of Wolbachia-isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria. - Front. Microbiol. 6: 1388, 15 pp. Go to original source...
  6. Brownlie J.C., Cass B.N., Riegler M., Witsenburg J.J., Iturbe-Ormaetxe I., McGraw E.A. & O'Neill S.L. 2009: Evidence for metabolic provisioning by a common invertebrate endo­symbiont, Wolbachia pipientis, during periods of nutritional stress. - PLoS Pathog. 5(4): e1000368, 5 pp. Go to original source...
  7. Brunetti M., Magoga G., Gionechetti F., De Biase A. & Montagna M. 2022: Does diet breadth affect the complexity of the phytophagous insect microbiota? The case study of Chrysomelidae. - Environ. Microbiol. [in press]. Go to original source...
  8. Bykov R., Kerchev I., Demenkova M., Ryabinin A. & Ilinsky Y. 2020: Sex-specific Wolbachia infection patterns in populations of Polygraphus proximus blandford (Coleoptera; Curculionidae: Scolytinae). - Insects 11: 547, 12 pp. Go to original source...
  9. Cardoso A. & Gómez-Zurita J. 2020: Food resource sharing of alder leaf beetle specialists (Coleoptera: Chrysomelidae) as potential insect-plant interface for horizontal transmission of endosymbionts. - Environ. Entomol. 49: 1402-1414. Go to original source...
  10. Caspi-Fluger A., Inbar M., Mozes-Daube N., Katzir N., Portnoy V., Belausov E., Hunter M.S. & Zchori-Fein E. 2012: Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. - Proc. Biol. Sci. (B) 279: 1791-1796. Go to original source...
  11. Castillo A.M., Saltonstall K., Arias C.F., Chavarria K.A., Ramírez-Camejo L.A., Mejía L.C. & De León L.F. 2020: The microbiome of Neotropical water striders and its potential role in codiversification. - Insects 11: 578, 15 pp. Go to original source...
  12. Chakraborty A., Ashraf M.Z., Modlinger R., Synek J., Schlyter F. & Roy A. 2020: Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. - Sci. Rep. 10: 18572, 17 pp. Go to original source...
  13. Charlat S., Hurst G.D.D. & Merçot H. 2003: Evolutionary consequences of Wolbachia infections. - Trends Genet. 19: 217-223. Go to original source...
  14. Chen S.J., Lu F., Cheng J.A., Jiang M.X. & Way M.O. 2012: Identification and biological role of the endosymbionts Wolbachia in rice water weevil (Coleoptera: Curculionidae). - Environ. Entomol. 41: 469-477. Go to original source...
  15. Chrostek E., Pelz-Stelinski K., Hurst G.D.D. & Hughes G.L. 2017: Horizontal transmission of intracellular insect symbionts via plants. - Front. Microbiol. 8: 2237, 8 pp. Go to original source...
  16. Clark M.E., Bailey-Jourdain C., Ferree P.M., England S.J., Sullivan W., Windsor D.M. & Werren J.H. 2008: Wolbachia modification of sperm does not always require residence within developing sperm. - Heredity 101: 420-428. Go to original source...
  17. Clark T.L., Meinke L.J., Skoda S.R. & Foster J.E. 2001: Occurrence of Wolbachia in selected diabroticite (Coleoptera: Chrysomelidae) beetles. - Ann. Entomol. Soc. Am. 94: 877-885. Go to original source...
  18. Correa C.C. & Ballard J.W.O. 2016: Wolbachia associations with insects: winning or losing against a master manipulator. - Front. Ecol. Evol. 3: 153, 18 pp. Go to original source...
  19. Dudek K., Humiñska K., Wojciechowicz J. & Tryjanowski P. 2017: Metagenomic survey of bacteria associated with the invasive ladybird Harmonia axyridis (Coleoptera: Coccinellidae). - Eur. J. Entomol. 114: 312-316. Go to original source...
  20. Duron O., Bouchon D., Boutin S., Bellamy L., Zhou L., Engelstädter J. & Hurst G.D. 2008: The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. - BMC Biol. 6: 27, 12 pp. Go to original source...
  21. Elias-Costa A.J., Confalonieri V.A., Lanteri A.A. & Rodriguero M.S. 2019: Game of clones: Is Wolbachia inducing speciation in a weevil with a mixed reproductive mode? - Mol. Phyl. Evol. 133: 42-53. Go to original source...
  22. Engelstädter J. & Hurst G.D.D. 2007: The impact of male-killing bacteria on host evolutionary processes. - Genetics 175: 245-254. Go to original source...
  23. Fialho R.F. & Stevens L. 1996: Wolbachia infections in the flour beetle Tribolium confusum: evidence for a common incompatibility type across strains. - J. Invert. Pathol. 67: 195-197. Go to original source...
  24. Giordano R., Jackson J.J. & Robertson H.M. 1997: The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. - PNAS 94: 11439-11444. Go to original source...
  25. Gómez-Zurita J. 2019: Assessment of the role of Wolbachia in mtDNA paraphyly and the evolution of unisexuality in Calligrapha (Coleoptera: Chrysomelidae). - Ecol. Evol. 9: 11198-11214. Go to original source...
  26. Gonella E., Pajoro M., Marzorati M., Crotti E., Mandrioli M., Pontini M., Bulgari D., Negri I., Sacchi L., Chouaia B., Daffonchio D. & Alma A. 2015: Plant mediated interspecific horizontal transmission of an intracellular symbiont in insects. Sci. Rep. 5: 15811, 10 pp. Go to original source...
  27. Groussin M., Mazel F. & Alm E.J. 2020: Co-evolution and co-speciation of host-gut bacteria systems. - Cell Host Microbe. 28: 12-22. Go to original source...
  28. Guerrero R., Margulis L. & Berlanga M. 2013: Symbiogene­sis: the holobiont as a unit of evolution. - Int. Microbiol. 16: 133-143.
  29. Hamilton P.T. & Perlman S.J. 2013: Host defense via symbiosis in Drosophila. - PLoS Pathog. 9(12): e1003808, 4 pp. Go to original source...
  30. Hancock P.A., Sinkins S.P. & Godfray J.H.C. 2011: Population dynamic models of the spread of Wolbachia. - Am. Nat. 177: 323-333. Go to original source...
  31. Heddi A., Grenier A.M., Khatchadourian C.H., Charles H. & Nardon P. 1999: Four intracellular genomes direct weevil bio­logy: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. - PNAS 96: 6814-6819. Go to original source...
  32. Hedges L.M., Brownlie J.C., O'Neill S.L. & Johnson K.N. 2008: Wolbachia and virus protection in insects. - Science 322: 702. Go to original source...
  33. Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A. & Werren J.H. 2008: How many species are infected with Wolbachia? A statistical analysis of current data. - FEMS Microbiol. Lett. 281: 215-220. Go to original source...
  34. Hoffmann A.A. & Turelli M. 1997: Cytoplasmic incompatibility in insects. In O'Neill S.L., Hoffmann A.A. & Werren J.H. (eds): Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, New York, pp. 42-80. Go to original source...
  35. Hosokawa T., Koga R., Kikuchi Y., Meng X.Y. & Fukatsu T. 2010: Wolbachia as a bacteriocyte-associated nutritional mutualist. - PNAS 107: 769-774. Go to original source...
  36. Huang M., Tang M. & Yu J. 2015: Wolbachia infection dynamics by reaction-diffusion equations. - Sci. China Math. 58: 77-96. Go to original source...
  37. Hurst G.D. & Jiggins F.M. 2000: Male-killing bacteria in insects: mechanisms, incidence, and implications. - Emerg. Infect. Dis. 6: 329-336. Go to original source...
  38. Hurst G.D.D. & Jiggins F.M. 2005: Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. - Proc. R. Soc. (B, Biol. Sci.) 272: 1525-1534. Go to original source...
  39. Jäckel R., Mora D. & Dobler S. 2013: Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. - Mol. Ecol. 22: 4241-4255. Go to original source...
  40. Jaenike J. 2009: Coupled population dynamics of endosymbionts within and between hosts. - Oikos 118: 353-362. Go to original source...
  41. Jiggins F.M. 2003: Male-killing Wolbachia and mitochondrial dna: selective sweeps, hybrid introgression and parasite population dynamics. - Genetics 164: 5-12. Go to original source...
  42. Jiggins F.M., Bentley J.K., Majerus M.E.N. & Hurst G.D.D. 2002: Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. - Mol. Ecol. 11: 1275-1283. Go to original source...
  43. Jordal B.H. 2007: Reconstructing the phylogeny of Scolytinae and close allies: Major obstacles and prospects for a solution. In Bentz B., Cognato A. & Raffa K. (eds): Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms. Proc. RMRS-P-45. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp. 3-9.
  44. Kaczmarczyk-Ziemba A., Zagaja M., Wagner G.K., Pietrykow­ska-Tudruj E. & Staniec B. 2020: First insight into microbiome profiles of myrmecophilous beetles and their host, red wood ant Formica polyctena (Hymenoptera: Formicidae) - A case study. - Insects 11: 134, 19 pp. Go to original source...
  45. Kageyama D., Narita S. & Watanabe M. 2012: Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications. - Insects 3: 161-199. Go to original source...
  46. Kajtoch £. & Kotásková N. 2018: Current state of knowledge on Wolbachia infection among Coleoptera: a systematic review. - PeerJ 6: e4471, 31 pp. Go to original source...
  47. Kajtoch £., Korotyaev B. & Lachowska-Cierlik D. 2012: Genetic distinctness of parthenogenetic forms of European Polydrusus weevils of the subgenus Scythodrusus. - Insect Sci. 19: 183-194. Go to original source...
  48. Kajtoch £., Montagna M. & Wanat M. 2018: Species delimitation within the Bothryorrhynchapion weevils: multiple evidence from genetics, morphology and ecological associations. - Mol. Phyl. Evol. 120: 354-363. Go to original source...
  49. Kajtoch £., Kolasa M., Kubisz D., Gutowski J.M., ¦cibior R., Mazur M.A. & Holecová M. 2019: Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. - Sci. Rep. 9: 847, 16 pp. Go to original source...
  50. Kawasaki Y., Schuler H., Stauffer C., Lakatos F. & Kajimura H. 2016: Wolbachia endosymbionts in haplodiploid and di­ploid scolytine beetles (Coleoptera: Curculionidae: Scolytinae). - Environ. Microbiol. Rep. 8: 680-688. Go to original source...
  51. Keller G.P., Windsor D.M., Scucedo J.M. & Werren J.H. 2004: Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae). - Mol. Ecol. 13: 2405-2420. Go to original source...
  52. Kim Y. & Nielsen R. 2004: Linkage disequilibrium as a signature of selective sweeps. - Genetics 167: 1513-1524. Go to original source...
  53. Kolasa M., Montagna M., Mereghetti V., Kubisz D., Mazur M.A. & Kajtoch £. 2017: Preliminary evidence of Wolbachia horizontal transmission between Crioceris leaf beetles and Asparagus host plants. - Eur. J. Entomol. 114: 446-454. Go to original source...
  54. Kolasa M., Kubisz D., Gutowski J.M., ¦cibior R., Mazur M.M., Holecová M. & Kajtoch £. 2018a: Infection by endosymbiotic "male-killing" bacteria in Coleoptera. - Folia Biol. (Kraków) 66: 165-178. Go to original source...
  55. Kolasa M., Kubisz D., Mazur M.A., ¦cibior R. & Kajtoch £. 2018b: Wolbachia prevalence and diversity in selected riverine predatory beetles (Bembidiini and Paederini). - Bull. Insect. 71: 193-200.
  56. Kondo N., Tuda M., Toquenaga Y., Lan Y.C., Buranapanichpan S., Horng S.B., Shimada M. & Fukatsu T. 2011: Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. - Zool. Sci. 28: 501-508. Go to original source...
  57. Kotásková N., Kolasa M. & Kajtoch £. 2018: Contrasting patterns of molecular diversity and Wolbachia infection in bisexual and parthenogenetic Strophosoma weevils (Coleoptera: Curculionidae). - Entomol. Sci. 21: 385-395. Go to original source...
  58. Lachowska D., Kajtoch £. & Knutelski S. 2010: Occurrence of Wolbachia in central European weevils: correlations with host systematics, ecology and biology. - Entomol. Exp. Appl. 14: 105-118. Go to original source...
  59. Lanteri A.A. & Normark B.B. 1995: Parthenogenesis in the tribe Naupactini (Coleoptera: Curculionidae). - Ann. Entomol. Soc. Am. 88: 722-731. Go to original source...
  60. Li H., Shu X., Meng L., Zhou X. & Obrycki J.J. 2021: Prevalence of maternally-inherited bacteria in native and invasive populations of the harlequin ladybird beetle Harmonia axyridis. - Biol. Invas. 23: 1461-1471. Go to original source...
  61. Lindsey A.R., Bordenstein S.R., Newton I.L. & Rasgon J.L. 2016: Wolbachia pipientis should not be split into multiple species: A response to Ramírez-Puebla et al. "Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxteri', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylori', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups". - Syst. Appl. Microbiol. 39: 220-222. Go to original source...
  62. Majerus M.E., Hinrich J., Schulenburg H.J. & Zakharov I.A. 2000: Multiple causes of male-killing in a single sample of the 2-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) from Moscow. - Heredity 84: 605-609. Go to original source...
  63. Maleki-Ravasan N., Akhavan N., Raz A., Jafari M., Zakeri S. & Dinparast Djadid N. 2019: Co-occurrence of pederin-producing and Wolbachia endobacteria in Paederus fuscipes Curtis, 1840 (Coleoptera: Staphilinidae) and its evolutionary consequences. - MicrobiologyOpen 8: e777, 9 pp. Go to original source...
  64. Margulis L. & Bermudes D. 1985: Symbiosis as a mechanism of evolution: Status of cell symbiosis theory. - Symbiosis 1: 101-124.
  65. Mazur M.A., Holecová M., Lachowska-Cierlik D., Lis A., Kubisz D. & Kajtoch £. 2016: Selective sweep of Wolbachia and parthenogenetic host genomes on the example of the weevil Eusomus ovulum. - Insect Mol. Biol. 25: 701-711. Go to original source...
  66. Miraldo A. & Duplouy A. 2019: High Wolbachia strain diversity in a clade of dung beetles endemic to Madagascar. - Front. Ecol. Evol. 7: 157, 8 pp. Go to original source...
  67. Montagna M., Chouaia B., Sacchi L., Porretta D., Martin E., Giorgi A., Lozzia G.C. & Epis S.A. 2014: New strain of Wolbachia in an alpine population of the viviparous Oreina cacaliae (Coleoptera: Chrysomelidae). - Environ. Entomol. 43: 913-922. Go to original source...
  68. Numajiri Y., Kondo N.I. & Toquenaga Y. 2017: Melanic mutation causes a fitness decline in bean beetles infected by Wolbachia. - Entomol. Exp. Appl. 164: 54-65. Go to original source...
  69. O'Neill S.L., Giordano R., Colbert A.M., Karr T.L. & Robertson H.M. 1992: 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. - PNAS 89: 2699-2702. Go to original source...
  70. Parker E.S., Newton I.L.G. & Moczek A.P. 2020: (My microbiome) would walk 10,000 miles: Maintenance and turnover of microbial communities in introduced dung beetles. - Microb. Ecol. 80: 435-446. Go to original source...
  71. Perlman S.J., Hunter M.S. & Zchori-Fein E. 2006: The emerging diversity of Rickettsia. - Proc. R. Soc. Lond. (B, Biol. Sci.) 273: 2097-2106. Go to original source...
  72. Perotti M.A., Young D.K. & Braig H.R. 2016: The ghost sex-life of the paedogenetic beetle Micromalthus debilis. - Sci. Rep. 6: 27364, 10 pp. Go to original source...
  73. Plewa R., Sikora K., Gutowski J.M., Jaworski T., Tarwacki G., Tkaczyk M., Rossa R., Hilszczañski J., Magoga G. & Kajtoch £. 2018: Morphology, genetics and Wolbachia endosymbionts support distinctiveness of Monochamus sartor sartor and M. s. urussovii (Coleoptera: Cerambycidae). - Arthr. Syst. Phyl. 76: 123-135. Go to original source...
  74. Poinsot D., Charlat S. & Mercot H. 2003: On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. - Bioessays 25: 259-265. Go to original source...
  75. Ramirez-Puebla S.T., Servín-Garcidueñas L.E., Ormeño-Orrillo E., Vera-Ponce de León A., Rosenblueth M., Delaye L., Martínez J. & Martínez-Romero E. 2015: Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxteri', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylori', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups. - Syst. Appl. Microbiol. 38: 390-399. Go to original source...
  76. Richardson L.A. 2017: Evolving as a holobiont. - PLoS Biol. 15(2): e2002168, 4 pp. Go to original source...
  77. Ritter S., Michalski S.G., Settele J., Wiemers M., Fric Z.F., Sielezniew M., ©a¹iæ M., Rozier Y. & Durka W. 2013: Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepido­ptera: Lycaenidae). - PLoS ONE 8(11): e78107, 13 pp. Go to original source...
  78. Robertson J.G. 1966: The chromosomes of bisexual and parthenogenetic species of Calligrapha (Coleoptera: Chrysomelidae) with notes on sex ratio, abundance and egg number. - Can. J. Cytol. 8: 695-732. Go to original source...
  79. Rodriguero M.S., Confalonieri V.A., Guedes J.V.C. & Lanteri A.A. 2010a: Wolbachia infection in the tribe Naupactini (Coleoptera, Curculionidae): association between thelytokous parthenogenesis and infection status. - Insect Mol. Biol. 19: 631-640. Go to original source...
  80. Rodriguero M.S., Lanteri A.A. & Confalonieri V.A. 2010b: Mito-nuclear genetic comparison in a Wolbachia infected weevil: insights on reproductive mode, infection age and evolutionary forces shaping genetic variation. - BMC Evol. Biol. 10: 340, 15 pp. Go to original source...
  81. Rodriguero M.S., Scannapieco A.C., Monti D.S., Chifflet L., Elias-Costa A.J., Lanteri A.A. & Confalonieri V.A. 2021: Dependence of egg hatching on Wolbachia density in a parthenogenetic weevil revealed by antibiotic treatment. - Entomol. Exp. Appl. 169: 384-392. Go to original source...
  82. Roehrdanz R. & Levine E. 2007: Wolbachia bacterial infections linked to mitochondrial DNA reproductive isolation among populations of northern corn rootworm (Coleoptera: Chrysomelidae). - Ann. Entomol. Soc. Am. 100: 522-531. Go to original source...
  83. Roehrdanz R., Olson D., Bourchier R., Sears S., Cortilet A. & Fauske G. 2006: Mitochondrial DNA diversity and Wolbachia infection in the flea beetle Aphthona nigriscutis (Coleoptera: Chrysomelidae): an introduced biocontrol agent for leafy spurge. - Biol. Control 37: 1-8. Go to original source...
  84. Rosenberg E. & Zilber-Rosenberg I. 2016: Microbes drive evolution of animals and plants: the hologenome concept. - MBio 7(2): e01395-15, 8 pp. Go to original source...
  85. Rosenberg E. & Zilber-Rosenberg I. 2018: The hologenome concept of evolution after 10 years. - Microbiome 6: 78, 14 pp. Go to original source...
  86. Sanaei E., Charlat S. & Engelstädter J. 2021: Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. - Biol. Rev. 96: 433-453. Go to original source...
  87. Santiago E. & Caballero A. 2005: Variation after a selective sweep in a subdivided population. - Genetics 169: 475-483. Go to original source...
  88. Saura A.J., Lokki P., Lankinen P. & Suomalainen E. 1993: Origin of polyploidy in parthenogenetic weevils. - J. Theor. Biol. 163: 449-456. Go to original source...
  89. Sexton J.P., McIntyre P.J., Angert M.L. & Rice K.J. 2009: Evolution and ecology of species range limits. - Annu. Rev. Ecol. Evol. Syst. 40: 415-436. Go to original source...
  90. Shaikevich E.V., Romanov D.A. & Zakharov I.A. 2021: The diversity of Wolbachia and its effects on host reproduction in a single Adalia bipunctata (Coleoptera: Coccinellidae) population. - Symbiosis 85: 249-257. Go to original source...
  91. Shapira M. 2016: Gut microbiotas and host evolution: Scaling up symbiosis. - Trends Ecol. Evol. 31: 539-549. Go to original source...
  92. Simon J.C., Marchesi J.R., Mougel C. & Selosse M.A. 2019: Host-microbiota interactions: from holobiont theory to analysis. - Microbiome 7: 5, 5 pp. Go to original source...
  93. ¦lipiñski S.A., Leschen R.A.B. & Lawrence J.F. 2011: Order Coleoptera Linnaeus, 1758. In: Zhang Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. - Zootaxa 3148: 203-208. Go to original source...
  94. Smith M.A., Bertrand C., Crosby K., Eveleigh E.S., Fernandez-Triana J., Fisher B.L., Gibbs J., Hajibabaei M., Hallwachs W., Hind K., Hrcek J., Huang D.W., Janda M., Janzen D.H., Li Y., Miller S.E., Packer L., Quicke D., Ratnasingham S., Rodriguez J., Rougerie R., Shaw M.R., Sheffield C., Stahlhut J.K., Steinke D., Whitfield J., Wood M. & Zhou X. 2012: Wolbachia and DNA barcoding insects: patterns, potential, and problems. - PLoS ONE 7(5): e36514, 12 pp. Go to original source...
  95. Son Y., Luckhart S., Zhang X., Lieber M.J., Lewis E.E. 2008: Effects and implications of antibiotic treatment on Wolbachia-infected vine weevil (Coleoptera: Curculionidae). - Agric. Forest Entomol. 10: 147-155. Go to original source...
  96. Sontowski R., Bernhard D., Bleidorn C., Schlegel M. & Gerth M. 2015: Wolbachia distribution in selected beetle taxa characterized by PCR screens and MLST data. - Ecol. Evol. 5: 4345-4353. Go to original source...
  97. Stouthamer R., Breeuwer J.A. & Hurst G.D. 1999: Wolbachia pipientis: microbial manipulator of arthropod reproduction. - Annu. Rev. Microbiol. 53: 71-102. Go to original source...
  98. Takano S.I., Tuda M., Takasu K., Furuya N., Imamura Y., Kim S., Tashiro K., Iiyama K., Tavares M. & Amaral A.C. 2017: Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. - PNAS 114: 6110-6115. Go to original source...
  99. Takenouchi Y. 1986: Origin of parthenogenetic weevils. - La Kromosomo II 40: 50-89.
  100. Toju H. & Fukatsu T. 2011: Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. - Mol. Ecol. 20: 853-868. Go to original source...
  101. To¹evski I., Caldara R., Joviæ J., Hernández-Vera G., Baviera C., Gassman A. & Emerson B.C. 2015: Host associated genetic divergence and taxonomy in the Rhinusa pilosa Gyllenhal species complex: an integrative approach. - Syst. Entomol. 40: 268-287. Go to original source...
  102. Tuda M., Iwase S., Kébé K., Haran J., Skuhrovec J., Sanaei E., Tsuji N., Podlussány A., Merkl O., El-Heneidy A.H. & Morimoto K. 2021: Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia. - Sci. Rep. 11: 9664, 14 pp. Go to original source...
  103. Vavre F., Fleury F., Lepetit D., Fouillet P. & Boulétreau M. 1999: Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. - Mol. Biol. Evol. 16: 1711-1723. Go to original source...
  104. Vega F.E., Benavides P., Stuart J. & O'Neill S.L. 2002: Wolbachia infection in the coffee berry borer (Coleoptera: Scolytidae). - Ann. Entomol. Soc. Am. 95: 374-378. Go to original source...
  105. Wang X., Xiong X., Cao W., Zhang C., Werren J.H. & Wang X. 2020: Phylogenomic analysis of Wolbachia strains reveals patterns of genome evolution and recombination. - Genome Biol. Evol. 12: 2508-2520. Go to original source...
  106. Weeks A.R., Turelli M., Harcombe W.R., Reynolds K.T. & Hoffmann A.A. 2007: From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. - PLoS Biol. 5(5): e114, 9 pp. Go to original source...
  107. Wei J., Segraves K.A., Xiao B.-H., Li W.-Z., Yang X.-K. & Xue H.-J. 2020: High prevalence of Wolbachia infection does not explain unidirectional cytoplasmic incompatibility of Altica flea beetles. - Ecol. Entomol. 45: 67-78. Go to original source...
  108. Weinert L.A., Tinsley M.C., Temperley M. & Jiggins F.M. 2007: Are we underestimating the diversity and incidence of insect bacterial symbionts? A case study in ladybird beetles. - Biol. Lett. 3: 678-681. Go to original source...
  109. Werren J.H. & Windsor D.M. 2000: Wolbachia infection frequencies in insects: evidence of a global equilibrium? - Proc. R. Soc. Lond. (B, Biol. Sci.) 267: 1277-1285. Go to original source...
  110. Werren J.H., Baldo L. & Clark M.E. 2008: Wolbachia: master manipulators of invertebrate biology. - Nat. Rev. Microbiol. 6: 741-751. Go to original source...
  111. White J.A., Giorgini M., Strand M.R. & Pennacchio F. 2013: Arthropod endosymbiosis and evolution. In Minelli A., Boxshall G. & Fusco G. (eds): Arthropod Biology and Evolution. Molecules, Development, Morphology. Springer, Berlin, Heidelberg, pp. 441-477. Go to original source...
  112. White J.A., Richards N.K., Laugraud A., Saeed A., Curry M.M. & McNeill M.R. 2015: Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. - Microb. Ecol. 70: 274-286. Go to original source...
  113. Wielkopolan B., Krawczyk K., Szabelska-Berêsewicz A. & Obrêpalska-Stêplowska A. 2021: The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect's developmental stage, host plant, and origin. - Sci. Rep. 11: 20496, 19 pp. Go to original source...
  114. Xue H.-J., Li W.-Z., Nie R.-E. & Yang X.-K. 2011: Recent speciation in three closely related sympatric specialists: inferences using multi-locus sequence, post-mating isolation and endo­symbiont data. - PLoS ONE 6: e27834, 9 pp. Go to original source...
  115. Zchori-Fein E., Borad C. & Harari A.R. 2006: Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. - Physiol. Entomol. 31: 164-169. Go to original source...
  116. Zilber-Rosenberg I. & Rosenberg E. 2008: Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. - FEMS Microbiol. Rev. 32: 723-735. Go to original source...
  117. Zug R. & Hammerstein P. 2012: Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. - PLoS ONE 7(6): e38544, 3 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.