Eur. J. Entomol. 114: 508-516, 2017 | DOI: 10.14411/eje.2017.065

Comparison of gut morphology and distribution of trehalase activity in the gut of wood-feeding and fungus-growing termites (Isoptera: Termitidae)

Nujira TATUN, Chutamas SAWATNATHI, Suwakan TANSAY, Jatuporn TUNGJITWITAYAKUL
School of Science, University of Phayao, 19 Moo 2 Maeka subdistrict, 56000 Phayao, Thailand; e-mails: nujira.ta@up.ac.th, t_jatuporn@hotmail.com

Termites are important decomposer due to their ability to digest cellulose and their diverse feeding habits. Trehalase is an enzyme that hydrolyzes trehalose to glucose in insects and has an important biological role. Gut morphology of wood-feeding termites (Globitermes sulphureus, Termitinae; Microcerotermes crassus, Termitinae and Bulbitermes prabhae, Nasutitermitinae) and fungus-growing termites (Macrotermes annandalei, Macrotermitinae) that belong to the family Termitidae was determined in this study. Results indicate that wood-feeding termites have a similar gut morphology, which consists of a foregut, midgut and elongated hindgut, which is divided into four segments. More specifically the enlarged segment in the hindgut, called a paunch, is prominent in wood-feeding termites, whereas fungus-growing termites have a simpler tubular gut with a very small paunch. Trehalase activity was high in the midgut of wood-feeding termites (G. sulphureus, Mi. crassus and B. prabhae), but in the fungus-growing termite (Ma. annandalei) the highest level of activity was recorded in the hindgut. Cellulase activity (endo-β-1,4-glucanase) was detected in all gut segments with very high levels in the hindguts of B. prabhae and Ma. annandalei. Differences in the distribution of trehalase and gut morphology correspond to the phylogenetic analyses of Termitidae, which indicate that Macrotermitinae is the sister group of Termitinae and Nasutitermitinae. In addition, validamycin suppressed trehalase activity in termites in vitro and in vivo, resulting in a high mortality in wood-feeding and fungus-growing termites, indicating that trehalase inhibitors could be useful tools for termite control.

Keywords: Isoptera, Termitidae, gut, digestion, trehalase, cellulase, validamycin, evolution, termite

Received: August 31, 2017; Accepted: November 2, 2017; Published online: November 21, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
TATUN, N., SAWATNATHI, C., TANSAY, S., & TUNGJITWITAYAKUL, J. (2017). Comparison of gut morphology and distribution of trehalase activity in the gut of wood-feeding and fungus-growing termites (Isoptera: Termitidae). Eur. J. Entomol.114(1), 2017.000. doi: 10.14411/eje.2017.065.
Download citation

References

  1. Abo-Khatwa A.N. 1989: Termitomyces: A new source of potent cellulases. - J. King Abdulaziz Univ. (Sci.) 1: 51-59. Go to original source...
  2. Anklin-Mühlemann R., Bignell D.E., Veivers P.C., Leuthold R.H. & Slaytor M. 1995: Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. - J. Insect Physiol. 41: 929-940. Go to original source...
  3. Becker A., Schlöder P., Steele J.E. & Wegener G. 1996: The regulation of trehalose metabolism in insects. - Experientia 52: 433-439. Go to original source...
  4. Bergmeyer H.U., Bernt E., Schmidt F. & Stork H. 1974: D-glucose determination and glucose-6-phosphate dehydrogenase. In Bergmeyer H.U. (ed.): Methods of Enzymatic Analysis. Vol. 3. Academic Press, New York, pp. 1196-1201.
  5. Bignell D.E. 1994: Soil-feeding and gut morphology in higher termites. In Hunt J.H. & Nalepa C.A. (ed.): Nourishment and Evolution in Insect Societies. Westview Press, Boulder, CO, pp. 131-158.
  6. Bignell D.E., Roisin Y. & Lo N. (eds) 2011: Biology of Termites: a Modern Synthesis. Springer, Dordrecht, 576 pp.
  7. Brune A. 2014: Symbiotic digestion of lignocellulose in termite guts. - Nat. Rev. Microbiol. 12: 168-180. Go to original source...
  8. Donovan S.E., Eggleton P. & Bignell D.E. 2001: Gut content analysis and new feeding group classification of termites. -Ecol. Entomol. 26: 356-366. Go to original source...
  9. Eggleton P. & Tayasu I. 2001: Feeding groups, lifetypes and the global ecology of termites. - Ecol. Res. 16: 941-960. Go to original source...
  10. Hirayama C., Konno K., Wasano N. & Nakamura M. 2007: Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx mori to mulberry defense. - Insect Biochem. Mol. Biol. 37: 1348-1358. Go to original source...
  11. Hongoh Y., Deevong P., Hattori S., Inoue T., Noda S., Noparatnaraporn N., Kudo T. & Ohkuma M. 2006: Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. - Appl. Environ. Microbiol. 72: 6780-6788. Go to original source...
  12. Hyodo F., Tayasu I., Inoue T., Azuma J., Kudo T. & Abe T. 2003: Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). - Funct. Ecol. 17: 186-193. Go to original source...
  13. Inward D.J.G., Vogler A.P. & Eggleton P. 2007: A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. - Mol. Phylogenet. Evol. 44: 953-967. Go to original source...
  14. Jin L.Q. & Zheng Y.G. 2009: Inhibitory effects of validamycin compounds on the termites trehalase. - Pestic. Biochem. Physiol. 95: 28-32. Go to original source...
  15. Jorge J.A., Polizeli M.L., Thevelein J.M. & Terenzi H.F. 1997: Trehalase and trehalose hydrolysis in fungi. - FEMS Microbiol. Lett. 154: 165-171. Go to original source...
  16. Li Z.Q., Liu B.R., Zeng W.H., Xiao W.L., Li Q.J. & Zhong J.H. 2013: Character of cellulase activity in the guts of flagellate-free termites with different feeding habits. - J. Insect Sci. 13: 37, 8 pp. Go to original source...
  17. Lo N., Li B. & Ujvari B. 2012: DNA methylation in the termite Coptotermes lacteus. - Insectes Soc. 59: 257-261. Go to original source...
  18. Mitsumasu K., Azuma M., Niimi T., Yamashita O. & Yaginuma T. 2005: Membrane penetrating trehalase from silkworm Bombyx mori molecular cloning and localization in larval midgut. - Insect Mol. Biol. 14: 501-508. Go to original source...
  19. Ni J. & Tokuda G. 2013: Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. - Biotech. Adv. 31: 838-850. Go to original source...
  20. Noirot C. 2001: The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). - Ann. Soc. Entomol. Fr. 37: 431-471.
  21. Ohkuma M. 2003: Termite symbiotic systems: efficient bio-recycling of lignocellulose. - Appl. Microbiol. Biotechnol. 61: 1-9. Go to original source...
  22. Osore H. & Okech M.A. 1983: The partial purification and some properties of cellulase and β-glucosidase of Termitomyces conidiophores and fruiting bodies. - J. Appl. Biochem. 5: 127-179.
  23. Robinski G., Wrzeszcz A. & Obuchowicz L. 1979: Differences in trehalase activity in the intestine of fed and starved larvae of Tenebrio molitor L. - Insect Biochem. 9: 485-488. Go to original source...
  24. Shukla E., Thorat L.J., Nath B.B. & Gaikwad S.M. 2014: Insect trehalase: Physiological significance and potential applications. - Glycobiology 25: 357-367. Go to original source...
  25. Slaytor M. 2000: Energy metabolism in the termite and its gut microbiota. In Abe T., Bignell D.E. & Higashi M. (eds): Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer, Dordrecht, pp. 307-32.
  26. Su N.Y. 2002: Novel technologies for subterranean termite control. - Sociobiology 40: 95-101.
  27. Tatun N., Singtripop T., Tungjitwitayakul J. & Sakurai S. 2008: Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. - Insect Biochem. Mol. Biol. 38: 788-795. Go to original source...
  28. Tatun N., Vajarasathira B., Tungjitwitayakul J. & Sakurai S. 2014a: Inhibitory effects of plant latex on trehalase activity and trehalase gene expression in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). - Eur. J. Entomol. 111: 11-18. Go to original source...
  29. Tatun N., Wangsantitham O., Tungjitwitayakul J. & Sakurai S. 2014b: Trehalase activity in fungus-growing termite, Odontotermes feae (Isoptera: Termitideae) and inhibitory effect of validamycin. - J. Econ. Entomol. 107: 1224-1232. Go to original source...
  30. Terra W.R., Ferreira C. & Baker J.E. 1996: Compartmentalization of digestion In Lehane M.J. & Billingsley P.F. (eds): Biology of the Insect Midgut. Chapman & Hall, London, pp. 206-235.
  31. Tokuda G. & Watanabe H. 2007: Hidden cellulase in termites: revision of an old hypothesis. - Biol. Lett. 3: 336-339. Go to original source...
  32. Tokuda G., Lo N., Watanabe H., Arakawa G., Matsumoto T. & Noda H. 2004: Major alteration of the expression site of endogenous cellulases in member of an apical termite lineage. - Mol. Ecol. 13: 3219-3228. Go to original source...
  33. Tokuda G., Lo N. & Watanabe H. 2005: Marked variations in patterns of cellulase activity against crystalline-vs carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. - Physiol. Entomol. 30: 372-380. Go to original source...
  34. Wegener G., Tschiedel V., Schölder P. & Ando O. 2003: The toxic and lethal effects of the trehalase inhibitor trehazolin in locust are caused by hypoglycemia. - J. Exp. Biol. 206: 1233-1240. Go to original source...
  35. Yang F., Xu B., Li J. & Huang Z. 2012: Transcriptome analysis of Termitomyces albuminosus reveals the biodegradation of lignocellulose. - Acta Microbiol. Sin. 52: 466-477.