Eur. J. Entomol. 114: 481-487, 2017 | DOI: 10.14411/eje.2017.061

Characterization and transcriptional analysis of a subtelomeric satellite DNA family in the ladybird beetle Henosepilachna argus (Coleoptera: Coccinellidae)

Pablo MORA, Jesús VELA, Areli RUIZ-MENA, Teresa PALOMEQUE, Pedro LORITE*
Área de Genética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain; e-mails: pmora@ujaen.es, jvela@ujaen.es, armena@ujaen.es, tpalome@ujaen.es, plorite@ujaen.es

Satellite DNAs are the major repetitive DNA components in eukaryotic genomes. Although satellite DNA has long been called "parasite DNA" there is substantial evidence that it could be associated with some functions of chromosome biology. Ladybird beetles (Coccinellidae) are one of the largest and most important groups of beetles. Many ladybirds are of economic interest as biological control agents because they eat some agricultural pests such as aphids and scale insects. However, other species are phytophagous and can damage crops. Despite the ecological importance of the latter group there are no studies on their satellite DNA. A satellite DNA family was isolated and characterized in the ladybird Henosepilachna argus. This satellite DNA is organized in tandem repeats of 658 bp and is A + T rich (67.3%). The recorded high sequence conservation of the monomers together with the detection of putative gene conversion processes indicate concerted evolution. Reverse transcription polymerase chain reaction (RT-PCR) revealed that this satellite DNA is transcribed and in situ hybridization its location in the subtelomeric regions of all chromosomes except the long arm of the X chromosome. The presence of this satellite DNA in other species of the genus Henosepilachna and Epilachna was also tested using PCR. The results indicate that this satellite DNA sequence is so far specific to H. argus.

Keywords: Coleoptera, Coccinellidae, Henosepilachna argus, ladybird beetle, satellite DNA, transcription, in situ hybridization

Received: August 21, 2017; Accepted: October 16, 2017; Published online: November 6, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
MORA, P., VELA, J., RUIZ-MENA, A., PALOMEQUE, T., & LORITE, P. (2017). Characterization and transcriptional analysis of a subtelomeric satellite DNA family in the ladybird beetle Henosepilachna argus (Coleoptera: Coccinellidae). Eur. J. Entomol.114(1), 2017.000. doi: 10.14411/eje.2017.061.
Download citation

References

  1. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. - Nucl. Acids Res. 25: 3389-3402. Go to original source...
  2. Biscotti M.A., Canapa A., Forconi M., Olmo E. & Barucca M. 2015a: Transcription of tandemly repetitive DNA: functional roles. - Chromos. Res. 23: 463-477. Go to original source...
  3. Biscotti M.A., Olmo E. & Heslop-Harrison J.S. 2015b: Repetitive DNA in eukaryotic genomes. - Chromos. Res. 23: 415-420. Go to original source...
  4. Bouchard B., Bousquet Y., Davies A.E., Alonso-Zarazaga M.A., Lawrence J.F., Lyal C.H.C., Newton A.F., Reid C.A.M., Schmitt M., ¦lipiñski S.A. & Smith A.B.T. 2011: Family-group names in Coleoptera. - Zookeys 88: 1-972. Go to original source...
  5. Dover G. 2002: Molecular drive. - Trends Genet. 18: 587-589. Go to original source...
  6. Feliciello I., Akrap I. & Ugarkoviæ D. 2015: Satellite DNA modulates gene expression in the beetle Tribolium castaneum after heat stress. - PLoS Genet. 11: e1005466, 18 pp. Go to original source...
  7. Ferree P.M. 2017: Sex differences: satellite DNA directs male-specific gene expression. - Curr Biol. 27: R378-R380. Go to original source...
  8. Ferree P.M. & Prasad S. 2012: How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. - Genet. Res. Int. 2012: 430136, 11 pp. Go to original source...
  9. Juan C., Pons J. & Petitpierre E. 1993: Localization of tandemly repeated DNA sequences in beetle chromosomes by fluorescent in situ hybridization. - Chromos. Res. 1: 167-174. Go to original source...
  10. Katoh T., Koji S., Ishida T.A., Matsubayashi K.W., Kahono S., Kobayashi N., Furukawa K., Viet B.T., Vasconcellos-Neto J., Lange C.N., Goergen G., Nakano S., Li N.N., Yu G.Y. & Katakura H. 2014: Phylogeny of Epilachna, Henosepilachna, and some minor genera of phytophagous ladybird beetles (Coleoptera: Coccinellidae: Coccinellinae: Epilachnini), with an analysis of ancestral biogeography and host-plant utilization. - Zool. Sci. 31: 820-830. Go to original source...
  11. Khost D.E., Eickbush D.G. & Larracuente A.M. 2017: Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster. - Genome Res. 27: 709-721. Go to original source...
  12. Kuhn G.C.S. 2015: Satellite DNA transcripts have diverse biological roles in Drosophila. - Heredity 115: 1-2. Go to original source...
  13. Li Y.C. & Lin C.C. 2012: Cervid satellite DNA and karyotypic evolution of Indian muntjac. - Genes Genom. 34: 7-11. Go to original source...
  14. Librado P. & Rozas J. 2009: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. - Bioinformatics 25: 1451-1452. Go to original source...
  15. Lima L.G. de, Svartman M. & Kuhn G.C.S. 2017: Dissecting the satellite DNA landscape in three cactophilic Drosophila sequenced genomes. - G3-Genes Genom. Genet. 7: 2831-2843.
  16. Lorite P., Chica E. & Palomeque T. 1996: Cytogenetic studies of ant Linepithema humile Shattuck (= Iridomyrmex humilis Mayr) in European populations. - Caryologia 49: 199-205. Go to original source...
  17. Lorite P., Carrillo J.A., Garnería I., Petitpierre E. & Palomeque T. 2002: Satellite DNA in the elm leaf beetle, Xanthogaleruca luteola (Coleoptera, Chrysomelidae): characterization, interpopulation analysis, and chromosome location. - Cytogenet. Genome Res. 98: 302-307. Go to original source...
  18. Lorite P., Torres M.I. & Palomeque T. 2013: Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). - Bull. Entomol. Res. 103: 538-546. Go to original source...
  19. Lorite P., Muñoz-López M., Carrillo J.A., Sanllorente O., Vela J., Mora P., Tinaut A., Torres M.I. & Palomeque T. 2017: Concerted evolution, a slow process for ant satellite DNA: study of the satellite DNA in the Aphaenogaster genus (Hymenoptera, Formicidae). - Org. Divers. Evol. 17: 595-606. Go to original source...
  20. Menon D.U., Coarfa C., Xiao W., Gunaratne P.H. & Meller V.H. 2014: siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster. - Proc. Natn. Acad. Sci. U.S.A. 111: 16460-16465. Go to original source...
  21. Mora P., Vela J., Sanllorente O., Palomeque T. & Lorite P. 2015: Molecular cytogenetic studies in the ladybird beetle Henosepilachna argus Geoffroy, 1762 (Coleoptera, Coccinellidae, Epilachninae). - Comp. Cytogenet. 9: 423-434. Go to original source...
  22. Nielsen E.S. & Mound L.A. 1999: Global diversity of insects: the problems of estimating numbers. In Raven P.H. & Williams T. (eds): Nature and Human Society: The Quest for a Sustainable World. National Academic Press, Washington DC, pp. 213-222.
  23. Palazzo A.F. & Gregory T.R. 2014: The case for junk DNA. - PLoS Genet. 10: e1004351, 8 pp. Go to original source...
  24. Palomeque T., Muñoz-López M., Carrillo J.A. & Lorite P. 2005: Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae). - Chromos. Res. 13: 795-807. Go to original source...
  25. Palomeque T. & Lorite P. 2008: Satellite DNA in insects: a review. - Heredity 100: 564-573. Go to original source...
  26. Pang H., ¦lipiñski A., Wu Y. & Zuo Y. 2012: Contribution to the knowledge of Chinese Epilachna Chevrolat with descriptions of new species (Coleoptera: Coccinellidae: Epilachnini). - Zootaxa 3420: 1-37.
  27. Pavlek M., Gelfand Y., Plohl M. & Me¹troviæ N. 2015: Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. - DNA Res. 22: 387-401. Go to original source...
  28. Plohl M., Me¹troviæ N. & Mravinac B. 2012: Satellite DNA evolution. - Genome Dyn. 7: 126-152. Go to original source...
  29. Pons J., Juan C. & Petitpierre E. 2002: Higher-order organization and compartmentalization of satellite DNA PIM357 in species of the coleopteran genus Pimelia. - Chromos. Res. 10: 597-606. Go to original source...
  30. Ro¹iæ S., Kohler F. & Erhardt S. 2014: Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. - J. Cell Biol. 207: 335-349. Go to original source...
  31. Sánchez A., Bullejos M., Burgos M., Jiménez R. & Díaz de la Guardia R. 1996: An alternative to blunt-end ligation for cloning DNA fragments with incompatible ends. - Trends Genet. 12: 44. Go to original source...
  32. Schaefer P.W. 1983: Natural enemies and host plants of species in the Epilachninae (Coleoptera: Coccinellidae) - a world list. - Delaware Agri. Exp. Stat. Bull. 445: 1-42.
  33. ¦lipiñski S.A. & Tomaszewska W. 2010: Coccinellidae Latreille, 1802. In Leschen R.A.B., Beutel R.G. & Lawrence J.F. (eds): Handbook of Zoology. Vol. 2. Coleoptera. Walter de Gruyter, Berlin/New York, pp. 454-472.
  34. Strachan T., Webb D. & Dover G.A. 1985: Transition stages of molecular drive in multiple-copy DNA families in Drosophila. - EMBO J. 4: 1701-1708.
  35. Szawaryn K., Bocák L., ¦lipiñski A., Escalona H.E. & Tomaszewska W. 2015: Phylogeny and evolution of phytophagous ladybird beetles (Coleoptera: Coccinellidae: Epilachnini), with recognition of new genera. - Syst. Entomol. 40: 547-569. Go to original source...
  36. Talbert P.B. & Henikoff S. 2010: Centromeres convert but don't cross. - PLoS Biol. 8: e1000326, 5 pp. Go to original source...
  37. Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013: MEGA 6: Molecular evolutionary genetics analysis version 6.0. - Mol. Biol. Evol. 30: 2725-2729. Go to original source...
  38. Tomaszewska W. & Szawaryn K. 2016: Epilachnini (Coleoptera: Coccinellidae) - A revision of the world genera. - J. Insect Sci. 169(1): 101, 91 pp. Go to original source...
  39. Thompson J.D., Higgings D. & Gibson T.J. 1994: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. - Nucl. Acids Res. 22: 4673-4680. Go to original source...
  40. Usakin L., Abad J., Vagin V.V., De Pablos B., Villasante A. & Gvozdev V.A. 2007: Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries. - Genetics 176: 1343-1349. Go to original source...