Eur. J. Entomol. 114: 325-331, 2017 | DOI: 10.14411/eje.2017.040

Temperature-dependent functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to different densities of pupae of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae)

Mohammad Ali ZIAEI MADBOUNI1, Mohammad Amin SAMIH1, Peyman NAMVAR2, Antonio BIONDI3
1 Department of Plant Protection, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; e-mails: mzm360@gmail.com, samia_aminir@yahoo.com
2 Plant Protection Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran; e-mail: p.namvar@areo.ir
3 University of Catania, Department of Agriculture, Food and Environment, Via Santa Sofia 100, Catania, Italy; e-mail: antonio.biondi@unict.it

The effect of temperature on the functional response of female adults of Nesidiocoris tenuis Reuter to different densities of Bemisia tabaci (Gennadius) pupae was assessed. Three constant temperatures (15, 25, and 35°C) and six prey densities (5, 10, 20, 35, 50, and 70) were tested over a 24-h period. Nesidiocoris tenuis exhibited a type II functional response at 15 and 25°C, and a type III response at 35°C. The number of prey consumed by the predator increased with increase in the prey density at all temperatures. Temperature influenced attack rates and handling times. The highest attack rate occurred at 35°C at high densities (35, 50, and 70 prey) and the lowest handling time was recorded at 35°C. The maximum attack rates (T/Th) were 17.13, 42.12, and 45.07 whitefly pupae per day at 15, 25 and 35°C, respectively. As a result, the value of a/Th indicates that N. tenuis was relatively more efficient in attacking B. tabaci at 35°C than at lower temperatures. Results suggest that the ability of N. tenuis to detect and consume B. tabaci over a broad range of temperatures, especially high temperatures (25-35°C), makes this mirid a good candidate for the biological control of whiteflies in warm environments, such as greenhouses.

Keywords: Hemiptera, Aleyrodidae, Bemisia tabaci, Miridae, Nesidiocoris tenuis, Lepidoptera, Gelechiidae, Tuta absoluta, biological control, functional response, temperature

Received: October 30, 2016; Accepted: May 23, 2017; Published online: July 13, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZIAEI MADBOUNI, M.A., SAMIH, M.A., NAMVAR, P., & BIONDI, A. (2017). Temperature-dependent functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to different densities of pupae of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Eur. J. Entomol.114(1), 2017.000. doi: 10.14411/eje.2017.040.
Download citation

References

  1. Abbes K., Biondi A., Kurtulus A., Ricupero M., Russo A., Siscaro G., Chermiti B. & Zappalà L. 2015: Combined non-target effects of insecticide and high temperatures on the parasitoid Bracon nigricans. - PLoS One 10(9): e0138411, 14 pp Go to original source...
  2. Abdel-Aziz A.M.A. 1994: Predatory Bug Macrolophus caliginosus Wagner as a Biocontrol Agent of Greenhouse Whitefly, Trialeurodes vaporariorum (Westwood). MSc. Thesis, Imperial College, University of London.
  3. Aggarwal N., Sharma S. & Jalali S.K. 2016: On-farm impact of biocontrol technology against rice stem borer, Scircophaga incertulas (Walker) and rice leaf folder Cnaphalocrocis medinalis (Guenee) in aromatic rice. - Entomol. Gener. 36: 137-148. Go to original source...
  4. Biondi A., Desneux N., Siscaro G. & Zappalà L. 2012: Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. - Chemosphere 87: 803-812. Go to original source...
  5. Biondi A., Chailleux A., Lambion J., Han P., Zappalà L. & Desneux N. 2013: Indigenous natural enemies attacking Tuta absoluta (Lepidoptera: Gelechiidae) in Southern France. - Egypt. J. Biol. Pest Contr. 23: 117-121.
  6. Biondi A., Campolo O., Desneux N., Siscaro G., Palmeri V. & Zappalà L. 2015: Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. - Chemosphere 128: 142-147. Go to original source...
  7. Biondi A., Zappalà L., Di Mauro A., Tropea Garzia G., Russo A., Desneux N. & Siscaro G. 2016: Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? - BioControl 61: 79-90. Go to original source...
  8. Biondi A., Guedes R.N.C., Wan F.H. & Desneux N. 2018: Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. - Annu. Rev. Entomol. 63: [in press] doi: 10.1146/annurev-ento-031616-034933. Go to original source...
  9. Böckmann E., Hommes M. & Meyhöfer R. 2015: Yellow traps reloaded: what is the benefit for decision making in practice? - J. Pest Sci. 88: 439-449. Go to original source...
  10. Bonsignore C.P. 2016: Environmental factors affecting the behavior of Coenosia attenuata, a predator of Trialeurodes vaporariorum in tomato greenhouses. - Entomol. Exp. Appl. 158: 87-96. Go to original source...
  11. Calvo J., Bolckmans K., Stansly P.A. & Urbaneja A. 2009: Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. - BioControl 54: 237-246. Go to original source...
  12. Campos M.R., Biondi A., Adiga A., Guedes R.N.C. & Desneux N. 2017: From the Western Palaearctic region to beyond: Tuta absoluta ten years after invading Europe. - J. Pest Sci. 90: 787-796. Go to original source...
  13. Chailleux A., Biondi A., Han P., Tabone E. & Desneux N. 2013: Suitability of the host-plant system Tuta absoluta-tomato for Trichogramma parasitoids and insights for biological control. - J. Econ. Entomol. 106: 2310-2321. Go to original source...
  14. De Clercq P., Mohaghegh J. & Tirry L. 2000: Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). - Biol. Contr. 18: 65-70. Go to original source...
  15. Desneux N. & O'Neil R.J. 2008: Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions. -  Bull. Entomol. Res. 98: 631-639. Go to original source...
  16. Drobnjakoviæ T., Marèiæ D., Prijoviæ M., Periæ P., Milenkoviæ S. & Bo¹koviæ J. 2016: Life history traits and population growth of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) local population from Serbia. - Entomol. Gen. 35: 281-295. Go to original source...
  17. Enkegaard A., Brodsgaard H.F & Hansen D.L. 2001: Macrolophus caliginosus: functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. - Entomol. Exp. Appl. 101: 81-88. Go to original source...
  18. Fantinou A.A., Perdikis D.C., Maselou D.A. & Lambropoulos P.D. 2008: Prey killing without consumption: does Macrolophus pygmaeus show adaptive foraging behavior? - Biol. Contr. 47: 187-193. Go to original source...
  19. Fantinou A.A., Perdikis D.C., Maselou D.A. & Lambropoulos P.D. 2009: Preference and consumption of Macrolophus pygmaeus preying on mixed instar assemblages of Myzus persicae. - Biol. Contr. 51: 76-80. Go to original source...
  20. Fekri M.S., Samih M.A., Imani S. & Zarabi M. 2016: The combined effect of some plant extracts and pesticide Pymetrozine and two tomato varieties on biological characteristics of Bemisia tabaci (Homoptera: Aleyrodidae) in greenhouse conditions. - Entomol. Gen. 35: 229-242. Go to original source...
  21. Foglar G., Malausa J.C. & Wajnberg E. 1990: The functional response and preference of Macrolophus caliginosus (Heteroptera: Miridae) for two of its prey: Myzus persicae and Tetranychus urticae. - Entomophaga 35: 465-474. Go to original source...
  22. Gerling D., Alomar O. & Arno J. 2001: Biological control of Bemisia tabaci using predators and parasitoids. - Crop Prot. 20: 779-799. Go to original source...
  23. Guo J.Y., Cong L., Zhou Z.S. & Wan F.H. 2012: Multi-generation life tables of Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) under high-temperature stress. - Environ. Entomol. 41: 1672-1679. Go to original source...
  24. Hamdan A.J.S. 2006: Functional and numerical responses of the predatory bug Macrolophus caliginosus Wagner fed on different densities of eggs of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). - J. Biol. Res. 6: 1-8.
  25. He Y.H., Zhao J.W., Zheng Y., Weng Q.Y., Biondi A., Desneux N. & Wu K. 2013: Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. - Int. J. Biol. Sci. 9: 246-255. Go to original source...
  26. Holling C.S. 1959: Some characteristics of simple types of predation and parasitism. - Can. Entomol. 91: 385-398. Go to original source...
  27. Holling C.S. 1965: The functional response of predators to prey density and its role in mimicry and population regulation. - Mem. Entomol. Soc. Can. 48: 3-60. Go to original source...
  28. Jalali M.A., Tirry L. & De Clercq P. 2010: Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. - BioControl 55: 261-269. Go to original source...
  29. Juliano S.A. 2001: Nonlinear curve fitting: predation and functional response curves. In Scheiner S. & Gurevitch J. (eds): Design and Analysis of Ecological Experiments. 2nd ed. Chapman & Hall, New York, pp. 178-196.
  30. Kalyebi A., Overholt W.A., Schulthess F., Mueke J.M., Hassan S.A. & Sithanantham S. 2005: Functional response of six indigenous trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) in Kenya: influence of temperature and a relative humidity. - Biol. Contr. 32: 164-171. Go to original source...
  31. Kareiva P. 1990: The spatial dimension in pest-enemy interaction. In Mackauer M., Ehler L.E. & Roland J. (eds): Critical Issues in Biological Control. Intercept, Andover, pp. 213-227.
  32. Kfir R. 1983: Functional response to host density by the egg parasite Trichogramma pretiosum. - Entomophaga 28: 345-353. Go to original source...
  33. Konecka E., Hrycak A. & Kaznowski A. 2016: Synergistic effect of Bacillus thuringiensis crystalline toxins against Cydia pomonella (Linneaus) (Tortricidae: Lepidoptera). - Entomol. Gener. 35: 317-317. Go to original source...
  34. Koski M.L. & Johnson B.M. 2002: Functional response of kokanee salmon (Oncorhynchus nerka) to Daphnia at different light levels. - Can. J. Fish. Aquat. Sci. 59: 707-716. Go to original source...
  35. Legaspi J.C. & Legaspi Jr B.C. 2008: Ovigeny in selected generalist predators. - Fla Entomol. 91: 133-135. Go to original source...
  36. Liang P., Tian Y.A., Biondi A., Desneux N. & Gao X.W. 2012: Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. - Ecotoxicology 21: 1889-1898. Go to original source...
  37. Logan J.D. & Wolesensky W. 2007: Accounting or temperature in predator functional responses. - Nat. Resour. Model. 20: 549-574. Go to original source...
  38. Lundgren J.G., Wyckhuys K.A.G. & Desneux N. 2009: Population responses by Orius insidiosus to vegetational diversity. - BioControl 54: 135-142. Go to original source...
  39. Mahdian K., Vantornhout I., Tirry L. & De Clercq P. 2006: Effects of temperature on predation by the stinkbugs Picromerus bidens and Podisus maculiventris (Heteroptera: Pentatomidae) on noctuid caterpillars. - Bull. Entomol. Res. 96: 489-496.
  40. Martínez-García H., Román-Fernández L.R., Sáenz-Romo M.G., Pérez-Moreno I. & Marco-Mancebón V.S. 2016: Optimizing Nesidiocoris tenuis (Hemiptera: Miridae) as a biological control agent: mathematical models for predicting its development as a function of temperature. - Bull. Entomol. Res. 106: 215-224. Go to original source...
  41. Martins J.C., Picanço M.C., Bacci L., Guedes R.N.C., Santana Jr P.A., Ferreira D.O. & Chediak M. 2016: Life table determination of thermal requirements of the tomato borer Tuta absoluta. - J. Pest Sci. 89: 897-908. Go to original source...
  42. Messina F.J. & Hanks J.B. 1998: Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinellidae). - Environ. Entomol. 27: 1196-1202. Go to original source...
  43. Moayeri H.R.S., Madadi H., Pouraskar H. & Enkegaard A. 2013: Temperature dependent functional response of Diaeretiella rapae (Hymenoptera: Aphidiidae) to the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae). - Eur. J. Entomol. 110: 109-113. Go to original source...
  44. Mohaghegh J., De Clercq P. & Tirry L. 2001: Functional response of the predators Podisus maculiventris (Say) and P. nigrispinus (Dallas) (Het. Pentatomidae) to the beet army worm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae): effect of temperature. - J. Appl. Entomol. 125: 131-134. Go to original source...
  45. Mollá O., Biondi A., Alonso-Valiente M. & Urbaneja A. 2014: A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. - BioControl 59: 175-183. Go to original source...
  46. Montserrat M., Albajes R. & Castane C. 2000: Functional response of four heteropteran predators preying on greenhouse whitefly (Homoptera: Aleyrodidae) and western flower thrips (Thysanoptera: Thripidae). - Environ. Entomol. 29: 1075-1082. Go to original source...
  47. Naselli M., Urbaneja A., Siscaro G., Jaques J., Zappalà L., Flors V. & Pérez-Hedo M. 2016: Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. - Int. J. Mol. Sci. 17: 1210, 13 pp. Go to original source...
  48. Naselli M., Zappalà L., Gugliuzzo A., Tropea Garzia G., Biondi A., Rapisarda C., Cincotta F., Condurso C., Verzera A. & Siscaro G. 2017a: Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. - Arthr. Plant Interact. 11: 121-131. Go to original source...
  49. Naselli M., Biondi A., Tropea Garzia G., Desneux N., Russo A., Siscaro G. & Zappalà L. 2017b: Insights on food webs associated with the South American tomato pinworm. - Pest Manag. Sci. 73: 1352-1357. Go to original source...
  50. Pakyari H., Fathipour Y., Rezapanah M. & Kamali K. 2009: Temperature-dependent functional response of Scolothrips longicornis Priesner (Thysanoptera: Thripidae) preying on Tetranychus urticae Koch (Acari: Tetranychidae). - J. Asia Pac. Entomol. 12: 23-26. Go to original source...
  51. Perdikis D. & Arvaniti K. 2016: Nymphal development on plant vs. leaf with and without prey for two omnivorous predators: Nesidiocoris tenuis (Reuter, 1895) (Hemiptera: Miridae) and Dicyphus errans (Wolff, 1804) (Hemiptera: Miridae). - Entomol. Gen. 35: 297-306. Go to original source...
  52. Perdikis D., Fantinou A., Garantonakis N., Kitsis P., Maselou D. & Panagakis S. 2009: Studies on the damage potential of the predator Nesidiocoris tenuis on tomato plants. - Bull. Insectol. 62: 41-46.
  53. Pérez-Hedo M., Urbaneja-Bernat P., Jaques J.A., Flors V. & Urbaneja A. 2015: Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. - J. Pest Sci. 88: 543-554. Go to original source...
  54. Rogers D. 1972: Random search and insect population models. - J. Anim. Ecol. 41: 369-383. Go to original source...
  55. Salehi Z., Yarahmadi F., Rasekh A. & Sohani N.Z. 2016: Functional responses of Orius albidipennis Reuter (Hemiptera, Anthocoridae) to Tuta absoluta Meyrick (Lepidoptera, Gelechiidae) on two tomato cultivars with different leaf morphological characteristics. - Entomol. Gen. 36:127-136. Go to original source...
  56. Sanchez J.A. & Lacasa A. 2008: Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. - J. Econ Entomol. 101: 1864-1870 Go to original source...
  57. Sanchez J.A., Lacasa A., Arno J., Castane C. & Alomar O. 2009: Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. - J. Appl. Entomol. 133: 125-132. Go to original source...
  58. Sanchez J., La-Spina M. & Lacasa A. 2014: Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. - Eur. J. Entomol. 111: 387-395. Go to original source...
  59. Sentis A., Hemptinne J.-L. & Brodeur J. 2012: Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. - Oecologia 169: 1117-1125. Go to original source...
  60. Sivapragasam A. & Asma A. 1985: Development and reproduction of the mirid bug, Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) and functional response to the brown planthopper. - Appl. Entomol. Zool. 20: 373-379. Go to original source...
  61. Song Y.H. & Heong K.L. 1997: Changes in searching response with temperature of Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) on the eggs of the brown planthopper, Nilaparvata lugens (Stal.) (Homoptera: Delphacidae). - Res. Popul. Ecol. 39: 201-206. Go to original source...
  62. Stansly P.A. & Naranjo S.E. 2010: Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht, 540 pp.
  63. Taggar G.K. & Gill R.S. 2016: Host plant resistance in Vigna sp. towards whitefly, Bemisia tabaci (Gennadius): a review. - 36: 1-24.
  64. Wang B. & Ferro D.N. 1998: Functional responses of Trichogramma ostriniae (Hym: Trichogrammatidae) to Ostrinia nubilalis (Lep: Pyralidae) under laboratory and field conditions. - Environ. Entomol. 27: 752-758. Go to original source...
  65. Zamani A.A., Talebi A.A., Fathipour Y. & Baniameri V. 2006: Temperature-dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphidiidae), on the cotton aphid. - J. Pest Sci. 79: 183-188. Go to original source...
  66. Zappalà L., Campolo O., Grande S., Saraceno F., Biondi A., Siscaro G. & Palmeri V. 2012: Dispersal of Aphytis melinus (Hymenoptera: Aphelinidae) after augmentative releases in citrus orchards. - Eur. J. Entomol. 109: 561-568. Go to original source...
  67. Zappalà L., Biondi A., Alma A., Al-Jboory I.J., Arnò J., Bayram A., Chailleux A., El-Arnaouty A., Gerling D. & Guenaoui Y. 2013: Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle-East, and their potential use in pest control strategies. - J. Pest Sci. 86: 635-647. Go to original source...