Eur. J. Entomol. 114: 257-266, 2017 | DOI: 10.14411/eje.2017.031

Warp-speed adaptation to novel hosts after 300 generations of enforced dietary specialisation in the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae)

Thomas N. PRICE1,2, Aoife LEONARD1, Lesley T. LANCASTER1,*
1 Institute of Biological and Environmental Sciences, Zoology Building, University of Aberdeen, Aberdeen AB24 2TZ, UK; e-mails: t.price.12@aberdeen.ac.uk, r05al15@abdn.ac.uk, lesleylancaster@abdn.ac.uk
2 Current address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK

Herbivorous insects are often highly specialised, likely due to trade-offs in fitness on alternative host species. However, some pest insects are extremely adaptable and readily adopt novel hosts, sometimes causing rapid expansion of their host range as they spread from their original host and geographic origin. The genetic basis of this phenomenon is poorly understood, limiting our ability to predict or mitigate global insect pest outbreaks. We investigated the trajectory of early adaptation to novel hosts in a regionally-specialised global crop pest species (the cowpea seed beetle Callosobruchus maculatus). After experimentally-enforced dietary specialisation for nearly 300 generations, we measured changes in fitness over the first 5 generations of adaptation to 6 novel hosts. Of these, C. maculatus reproduced successfully on all but one, with reduced fitness observed on three hosts in the first generation. Loss of fitness was followed by very rapid, decelerating increases in fitness over the first 1-5 generations, resulting in comparable levels of population fitness to that observed on the original host after 5 generations. Heritability of fitness on novel hosts was high. Adaptation occurred primarily via changes in behavioural and phenological traits, and never via changes in offspring survival to adulthood, despite high heritability for this trait. These results suggest that C. maculatus possesses ample additive genetic variation for very rapid host shifts, despite a prolonged period of enforced specialization, and also suggest that some previously-inferred environmental maternal effects on host use may in part actually represent (rapidly) evolved changes. We highlight the need to examine in more detail the genetic architecture facilitating retention of high additive genetic variation for host shifts in extremely adaptable global crop pests.

Keywords: Coleoptera, Chrysomelidae, Bruchinae, Callosobruchus maculatus, emerging crop pests, host shifts, genetic variation, adaptation trajectory, evolvability, experimental evolution, quasi-natural selection, heritability

Received: November 17, 2016; Accepted: May 9, 2017; Published online: May 26, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
PRICE, T.N., LEONARD, A., & LANCASTER, L.T. (2017). Warp-speed adaptation to novel hosts after 300 generations of enforced dietary specialisation in the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Eur. J. Entomol.114(1), 2017.000. doi: 10.14411/eje.2017.031.
Download citation

References

  1. Anderson D.R., Burnham K.P. & Thompson W.L. 2000: Null hypothesis testing: Problems, prevalence, and an alternative. - J. Wildl. Manag. 64: 912-923. Go to original source...
  2. Bates D., Mächler M., Bolker B. & Walker S. 2014: Fitting linear mixed-effects models using lme4. - J. Stat. Softw. 67: 51.
  3. Bebber D.P., Ramotowski M.T. & Gurr S.J. 2013: Crop pests and pathogens move polewards in a warming world. - Nat. Clim. Chang. 3: 985-988. Go to original source...
  4. Beck C.W. & Blumer L.S. 2014: A Handbook on Bean Beetles, Callosobruchus maculatus. National Science Foundation. URL: http://www.beanbeetles.org/handbook.pdf (last accessed 16 June 2015).
  5. Boeke S.J., Van Loon J.J.A., Van Huis A. & Dicke M. 2004: Host preference of Callosobruchus maculatus: A comparison of life history characteristics for three strains of beetles on two varieties of cowpea. - J. Appl. Entomol. 128: 390-396. Go to original source...
  6. Bowers M.D., Stamp N.E. & Collinge S.K. 1992: Early stage of host range expansion by a specialist herbivore, Euphydryas phaeton (Nymphalidae). - Ecology 73: 526-536. Go to original source...
  7. Caswell G.H. 1981: Damage to stored cowpea in the northern part of Nigeria. - Samaru J. Agric. Res. 1: 11-19.
  8. Dick K.M. & Credland P.F. 1984: Egg production and development of three strains of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). - J. Stor. Prod. Res. 20: 221-227. Go to original source...
  9. Eady P.E., Wilson N. & Jackson M. 2000: Copulating with multiple mates enhances female fecundity but not egg-to-adult survival in the bruchid beetle Callosobruchus maculatus. - Evolution 54: 2161-2165. Go to original source...
  10. Fox C.W. 1993: A quantitative genetic analysis of oviposition preference. - Evolution 47: 166-175. Go to original source...
  11. Fox C.W. 1994: Maternal and genetic influences on egg size and larval performance in a seed beetle (Callosobruchus maculatus): multigenerational transmission of a maternal effect? - Heredity 73: 509-517. Go to original source...
  12. Fox J. & Weisberg S. 2011: Multivariate Linear Models in R. - An R Companion to Applied Regression. 2nd ed. Sage. URL: https://cran.r-project.org/web/packages/car/car.pdf
  13. Fox C.W., Waddell K.J. & Mousseau T.A. 1995: Parental host plant affects offspring life histories in a seed beetle. - Ecology 76: 402-411. Go to original source...
  14. Fox C.W., Stillwell R.C., Amarillo A.R., Czesak M.E. & Messina F.J. 2004: Genetic architecture of population differences in oviposition behaviour of the seed beetle Callosobruchus maculatus. - J. Evol. Biol. 17: 1141-1151. Go to original source...
  15. Freeman S. & Herron J.C. 2014: Evolution at multiple loci: Quantitative genetics. In Freeman S. & Herron J.C. (eds): Evolutionary Analysis. Pearson Education, Harlow, Essex, pp. 335-376.
  16. Fricke C. & Arnqvist G. 2007: Rapid adaptation to a novel host in a seed beetle (Callosobruchus maculatus): The role of sexual selection. - Evolution 61: 440-454. Go to original source...
  17. Futuyma D.J. 2000: Potential evolution of host range in herbivorous insects. In Driesche R.V., Heard T., McClay A. & Reardon R. (eds): Proceedings Host-Specificity Testing of Exotic Arthropod Biological Control Agents: The Biological Basis for Improvement in Safety, Bozeman, Montana, USA, July 4-14, 1999. USDA Forest Service, Morgantown, West Virginia, pp. 42-53.
  18. Futuyma D.J., Cort R.P. & van Noordwijk I. 1984: Adaptation to host plants in the fall cankerworm (Alsophila pometaria) and its bearing on the evolution of host affiliation in phytophagous insects. - Am. Nat. 123: 287-296. Go to original source...
  19. Garland T., Rose M.R. & Michael R. 2009: Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments. University of California Press, Berkeley, Los Angeles, 730 pp.
  20. Gompert Z. & Messina F.J. 2016: Genomic evidence that resource-based trade-offs limit host-range expansion in a seed beetle. - Evolution 70: 1249-1264. Go to original source...
  21. Gutierrez D. & Thomas C.D. 2000: Marginal range expansion in a host-limited butterfly species Gonepteryx rhamni. - Ecol. Entomol. 25: 165-170. Go to original source...
  22. Jaenike J. 1990: Host specialization in phytophagous insects. - Annu. Rev. Ecol. Syst. 21: 243-273. Go to original source...
  23. Janzen D.H. 1977: How southern cowpea weevil larvae (Bruchidae: Callosobruchus maculatus) die on nonhost seeds. - Ecology 58: 921-927. Go to original source...
  24. Joshi A. & Thompson J.N. 1995: Trade-offs and the evolution of host specialization. - Evol. Ecol. 9: 82-92. Go to original source...
  25. Kawecki T.J., Lenski R.E., Ebert D., Hollis B., Olivieri I. & Whitlock M.C. 2012: Experimental evolution. - Trends Ecol. Evol. 27: 547-560. Go to original source...
  26. Koizumi T., Fujiyama N. & Katakura H. 1999: Host-plant specificity limits the geographic distribution of thistle feeding ladybird beetles. - Entomol. Exp. Appl. 93: 165-171. Go to original source...
  27. Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. 2016: Tests in Linear Mixed Effects Models Version. Cran. URL https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf
  28. Lancaster L.T. 2016: Widespread range expansions shape latitudinal variation in insect thermal limits. - Nat. Clim. Chang. 6: 618-621. Go to original source...
  29. Lynch M. & Walsh B. 1998: Sib analysis. In Lynch M. & Walsh B. (eds): Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA, pp. 553-579.
  30. Mazerolle M.J. 2016: AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Ver. 2.1-0. URL: https://cran.r-project.org/package=AICcmodavg.
  31. Messina F.J. 1993: Heritability and 'evolvability' of fitness components in Callosobruchus maculatus. - Heredity 71: 623-629. Go to original source...
  32. Messina F.J. 1998: Maternal influences on larval competition in insects. In Mousseau T.A. & Fox C.W. (eds): Maternal Effects as Adaptations. Oxford University Press, New York, pp. 227-243.
  33. Messina F.J. 2004a: How labile are the egg-laying preferences of seed beetles? - Ecol. Entomol. 29: 318-326. Go to original source...
  34. Messina F.J. 2004b: Predictable modification of body size and competitive ability. - Evolution 58: 2788-2797. Go to original source...
  35. Messina F.J. & Durham S.L. 2013: Adaptation to a novel host by a seed beetle (Coleoptera: Chrysomelidae: Bruchinae): effect of source population. - Environ. Entomol. 42: 733-742. Go to original source...
  36. Messina F.J. & Durham S.L. 2015: Loss of adaptation following reversion suggests trade-offs in host use by a seed beetle. - J. Evol. Biol. 28: 1882-1891. Go to original source...
  37. Messina F.J. & Johnson D. 2014: Specificity of adaptation to a novel host plant by a seed beetle. - Entomol. Exp. Appl. 153: 231-239. Go to original source...
  38. Messina F.J. & Jones J.C. 2009: Does rapid adaptation to a poor-quality host by Callosobruchus maculatus (F.) cause cross-adaptation to other legume hosts? - J. Stor. Prod. Res. 45: 215-219. Go to original source...
  39. Messina F.J. & Karren M.E. 2003: Adaptation to a novel host modifies host discrimination by the seed beetle Callosobruchus maculatus. - Anim. Behav. 65: 501-507. Go to original source...
  40. Messina F.J. & Mitchell R. 1989: Intraspecific variation in the egg-spacing behavior of the seed beetle Callosobruchus maculatus. - J. Insect Behav. 2: 727-742. Go to original source...
  41. Moller H., Smith R.H. & Sibly R.M. 1990: Evolutionary demography of a bruchid beetle. III. Correlated responses to selection and phenotypic plasticity. - Funct. Ecol. 4: 489-493. Go to original source...
  42. Mousseau T.A. & Roff D.A. 1987: Natural selection and the heritability of fitness components. - Heredity 59: 181-197. Go to original source...
  43. Nwanze K.F. & Horber E. 1975: Seed coats of cowpeas affect oviposition and larval development of Callosobruchus maculatus. - Environ. Entomol. 5: 213-218. Go to original source...
  44. Nwanze K.F., Horber E. & Pitts C.W. 1975: Evidence for ovipositional preference of Callosobruchus maculatus for Cowpea varieties. - Environ. Entomol. 4: 409-412. Go to original source...
  45. Orr H.A. 2005: The genetic theory of adaptation: a brief history. - Nat. Rev. Genet. 6: 119-127. Go to original source...
  46. Risch S.J., Andow D. & Altieri M.A. 1983: Agroecosystem diversity and pest control: Data, tentative conclusions, and new research directions. - Environ. Entomol. 12: 625-629. Go to original source...
  47. Scriber J.M. 2002: Evolution of insect-plant relationships: chemical constraints, coadaptation, and concordance of insect/plant traits. - Entomol. Exp. Appl. 104: 217-235. Go to original source...
  48. Singh S.R. 1977: Cowpea cultivars resistant to insect pests in world germplasm collection. - Trop. Grain Legum. Bull. 9: 3-7.
  49. Stastny M., Battisti A., Petrucco-Toffolo E., Schlyter F. & Larsson S. 2006: Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. - Ecol. Entomol. 31: 481-490. Go to original source...
  50. Tuda M. 2007: Applied evolutionary ecology of insects of the subfamily Bruchinae (Coleoptera: Chrysomelidae). - Appl. Entomol. Zool. 42: 337-346. Go to original source...
  51. Tuda M., Kagoshima K., Toquenaga Y. & Arnqvist G. 2014: Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. - PLoS One 9: 1-11. Go to original source...
  52. Wasserman S.S. & Futuyma D.J. 1981: Society for the study of evolution. - Evolution 35: 605-617. Go to original source...