Eur. J. Entomol. 100 (3): 305-312, 2003 | DOI: 10.14411/eje.2003.049
Activity and dormancy in relation to body water and cold tolerance in a winter-active springtail (Collembola)
- 1 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; email: wcb@bas.ac.uk
- 2 Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland; e-mail: juerg.zettel@zos.unibe.ch
Ceratophysella sigillata (Collembola, Hypogastruridae) has a life cycle which may extend for >2 years in a temperate climate. It exists in two main morphs, a winter-active morph and a summer-dormant morph in central European forests. The winter-active morph often occurs in large aggregations, wandering on leaf litter and snow surfaces and climbing on tree trunks. The summer-dormant morph is found in the upper soil layers of the forest floor. The cryobiology of the two morphs, sampled from a population near Bern in Switzerland, was examined using Differential Scanning Calorimetry to elucidate the roles of body water and the cold tolerance of individual springtails. Mean (SD) live weights were 62 ± 16 and 17 ± 6 µg for winter and summer individuals, respectively. Winter-active springtails, which were two feeding instars older than summer-dormant individuals, were significantly heavier (by up to 4 times), but contained less water (48% of fresh weight [or 0.9 g g-1 dry weight]) compared with summer-dormant animals (70% of fresh weight [or 2.5 g g-1 dry weight]). Summer-dormant animals had a slightly greater supercooling capacity (mean (SD) -16 ± 6°C) compared with winter-active individuals (-12 ± 3°C), and they also contained significantly larger amounts of both total body water and osmotically inactive (unfrozen) water. In the summer morph, the unfrozen fraction was 26%, compared to 11% in the winter morph. The ratio of osmotically inactive to osmotically active (freezable) water was 1 : 1.7 (summer) and 1 : 3.3 (winter); thus unfrozen water constituted 59% of the total body water during summer compared with only 30% in winter. Small, but significant, levels of thermal hysteresis were detected in the winter-active morph (0.15°C) and in summer-dormant forms (0.05°C), which would not confer protection from freezing. However, the presence of antifreeze proteins may prevent ice crystal growth when feeding on algae with associated ice crystals during winter. It is hypothesised that in summer animals a small decrease in freezable water results in a large increase in haemolymph osmolality, thereby reducing the vapour pressure gradient between the springtail and the surrounding air. A similar decrease in freezable water in winter animals will not have such a large effect. The transfer of free water into the osmotically inactive state is a possible mechanism for increasing drought survival in the summer-dormant morph. The ecophysiological differences between the summer and winter forms of C. sigillata are discussed in relation to its population ecology and survival.
Keywords: Collembola, Hypogastruridae, winter activity, summer dormancy, body water balance, osmotically inactive water, cold hardiness, Differential Scanning Calorimetry, thermal hysteresis
Received: October 15, 2002; Revised: January 6, 2003; Accepted: January 6, 2003; Published: September 15, 2003 Show citation
References
- Addo-Bediako A., Chown S.L. & Gaston K.J. 2001: Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47: 1377-1388
Go to original source...
- Bedos A. & Cassagnou P. 1988: La realisation de l'ecomorphose chez Hypogastrura boldorii (Collembole) a la tourbiere du Pinet (Aude). Rev. Ecol. Biol. Sol 25: 315-331
- Block W. 1994: Differential scanning calorimetry in ecophysiological research. Acta Oecol. 15: 13-22
- Block W. 2002: Interactions of water, ice nucleators and desiccation in invertebrate cold survival. Eur. J. Entomol. 99: 259-266
Go to original source...
- Block W. 2003: Water or ice? - the challenge for invertebrate cold survival. Science Progress 86: 77-102
Go to original source...
- Block W. & Bauer R. 2000: DSC studies of freezing in terrestrial enchytraeids (Annelida: Oligochaeta). CryoLetters 21: 99-106
- Block W., Wharton D.A. & Sinclair B.J. 1998: Cold tolerance of a New Zealand alpine cockroach, Celatoblatta quinquemaculata (Dictyoptera: Blattidae). Physiol. Entomol. 23: 1-6
Go to original source...
- Cassagnou P. & Laugra-Reyrel F. 1992: Sur le polymorphisme et le cycle sexuel du Collembole Superodontella lamellifera (Axelson) dans les Pyrenees. Annls Soc. Entomol. Fr. (NS) 28: 371-384
Go to original source...
- Duman J.G. 1977: The role of macromolecular antifreeze in the darkling beetle Meracantha contracta. J. Comp. Physiol. 115: 279-286
Go to original source...
- Duman J.G., Xu L, Neven L.G., Tursman D. & Wu D.W. 1991: Hemolymph proteins involved in insect sub-zero temperature tolerance: ice nucleators and antifreeze proteins. In: Lee R.E. & Denlinger D.L. (eds): Insects at Low Temperature. Chapman & Hall, New York, pp. 94-127
Go to original source...
- Franks F. 1986: Unfrozen water: yes; unfreezable water: hardly; bound water: certainly not. An editorial note. Cryo-Letters 7: 207
- Graham L.A., Walker V.K. & Davis P.L. 2000: Developmental and environmental regulation of antifreeze proteins in the mealworm Tenebrio molitor. Eur. J. Biochem. 267: 6452-6458
Go to original source...
- Hagvar S. 1995: Long distance, directional migration on snow in a forest collembolan, Hypogastrura socialis (Uzel). Acta Zool. Fenn. 196: 200-205
- Holmstrup M. & Westh P. 1994: Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. J. Comp. Physiol. B 164: 312-315
Go to original source...
- Holmstrup M. & Somme L. 1998: Dehydration and cold hardiness in the arctic collembolan Onychiurus arcticus Tullberg 1976. J. Comp. Physiol. B 168: 197-203
Go to original source...
- Holmstrup M., Bayley, M. & Ramlov H. 2002: Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable Arctic invertebrates. Proc. Natn. Acad. Sci. U.S.A. 99: 5716-5720
Go to original source...
- Hojer R., Bayley M., Damgaard C.F. & Holmstrup M. 2001: Stress synergy between drought and a common environmental contaminant: studies with the collembolan Folsomia candida. Global Change Biol. 7: 485-494
Go to original source...
- Husby J.A. & Zachariassen K.E. 1980: Antifreeze agents in the body fluid of winter active insects and spiders. Experientia 36: 963-964
Go to original source...
- Patterson J.L. & Duman J.G. 1978: The role of the thermal hysteresis factor in Tenebrio molitor larvae. J. Exp. Biol. 74: 37-45
Go to original source...
- Ramlov H. & Westh P. 1993: Ice formation in the freeze-tolerant alpine weta Hemideina maori Hutton (Orthoptera: Stenopelmatidae). CryoLetters 14: 169-176
- Sinclair B.J. & Chown S.L. 2002: Haemolymph osmolality and thermal hysteresis activity in 17 species of arthropods from sub-Antarctic Marion Island. Pol. Biol. 25: 928-933
Go to original source...
- Sinclair B.J. & Sjursen H. 2001: Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarctic Science 13: 271-279
Go to original source...
- Sjursen H. & Somme L. 2000: Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari: Oribatida) from Finse, Norway. J. Insect Physiol. 46: 1387-1396
Go to original source...
- Suter C., Zettel J. & Zettel U. 1993: Nahrungsoekologie der winteraktiven Collembolenart Ceratophysella sigillata (Hypogastruridae). Rev. Suisse Zool. 100: 805
- Somme L. 1999: The physiology of cold hardiness in terrestrial arthropods. Eur. J. Entomol. 96: 1-10
- Uchida H. & Fujita K. 1968: Mass occurrence and diurnal activity of Dicyrtomina rufescens (Collembola: Dicyrtomidae) in winter. Sci. Rep. Hirosaki Univ. 15: 36-48
- Westh P. & Kristensen R.M. 1992: Ice formation in the freeze-tolerant eutardigrades Adorybiotus corinifer and Amphibolus nebulosus studied by differential scanning calorimetry. Pol. Biol. 12: 693-699
Go to original source...
- Wharton D.A. & Block W. 1997: Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing. Cryobiology 34: 114-121
Go to original source...
- Wharton D.A. & Worland M.R. 2001: Water relations during desiccation of cysts of the potato-cyst nematode Globodera rostochiensis. J. Comp. Physiol. B 171: 121-126
Go to original source...
- Williams R.J. 1970: Freezing tolerance in Mytilus edulis. Comp. Biochem. Physiol. 35: 145-161
Go to original source...
- Willisch C. 2000: Dichte- und Altersverteilung der oberflaechenaktiven Form von Ceratophysella sigillata im Dezember. Res. Rep., Zool. Inst. Univ. Bern, 26 pp
- Worland M.R. 1996: The relationship between water content and cold tolerance in the Arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). Eur. J. Entomol. 93: 341-348
- Worland M.R., Block W. & Grubor-Lajsic G. 2000: Survival of Heleomyza borealis (Diptera, Heleomyzidae) larvae down to -60°C. Physiol. Entomol. 25: 1-5
Go to original source...
- Worland M.R., Grubor-Lajsic G. & Montiel P.O. 1998: Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). J. Insect Physiol. 44: 211-219
Go to original source...
- Zachariassen K.E., Hammel H.T. & Schmidek W. 1979: Osmotically inactive water in relation to freezing in Eleodes blanchardi beetles. Comp. Biochem. Physiol. A 63: 203-206
Go to original source...
- Zettel J. 1984: Cold hardiness strategies and thermal hysteresis in Collembola. Rev. Ecol. Biol. Sol 21: 189-203
- Zettel J. 1999: Alpine Collembola - adaptations and strategies for survival in harsh environments. Zoology 102: 73-89
- Zettel J. & Zettel U. 1994a: Development, phenology and surface activity of Ceratophysella sigillata (Uzel) (Collembola: Hypogastruridae). Acta Zool. Fenn. 195: 150-153
- Zettel U. & Zettel J. 1994b: Seasonal and reproductional polymorphism in Ceratophysella sigillata (Uzel) (Collembola: Hypogastruridae). Acta Zool. Fenn. 195: 154-156
- Zettel J. & Zettel U. 1996: Manche moegen's kalt - zur Biologie von Ceratophysella sigillata (Collembola, Hypogastruridae). Mitt. Entomol. Ges. Schweiz 69: 286
- Zettel J., Zettel U. & Egger B. 2000: Jumping technique and climbing behaviour of the collembolan Ceratophysella sigillata (Collembola: Hypogastruridae). Eur. J. Entomol. 97: 41-45
Go to original source...
- Zettel J., Zettel U. & Ryser A. 1997: Surface activity in Ceratophysella sigillata (Collembola: Hypogastruridae) and the influence of climatic parameters. Rev. Suisse Zool. 104: 725
- Zettel J., Zettel U., Suter C., Streich S. & Egger B. 2002: Winter feeding behaviour of Ceratophysella sigillata (Collembola: Hypogastruridae) and the significance of eversible vesicles for resource utilisation. Pedobiologia 46: 404-413
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.