How differences in the settling behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps

MIRKO WÖLFLING1, MIRA C. BECKER2, Britta UHL1, Anja TRAUB3 and KONRAD FIEDLER1

1 University of Vienna, Dept. of Botany & Biodiversity Research, Rennweg 14, 1030 Vienna, Austria; e-mails: saturnia@web.de, bridgie.is@gmx.de, konrad.fiedler@univie.ac.at
2 University of Würzburg, Department of Behavioral Physiology and Sociobiology, Theodor-Boveri-Institut für Biowissenschaften, Biocenter, Am Hubland, 97074 Würzburg, Germany; e-mail: mira.becker@uni-wuerzburg.de
3 University of Würzburg, Department of Tropical Biology and Animal Ecology, Theodor-Boveri-Institut für Biowissenschaften, Biocenter, Am Hubland, 97074 Würzburg, Germany; e-mail: anja.traub@gmx.net

Key words. Lepidoptera, moths, biodiversity assessment, sampling method, light-trapping, sampling bias

Abstract. Quantitative community-wide moth surveys frequently employ flight-interception traps equipped with UV-light emitting sources as attractants. It has long been known that moth species differ in their responsiveness to light traps. We studied how the settling behaviour of moths at a light trap may further contribute to sampling bias. We observed the behaviour of 1426 moths at a light tower. Moths were classified as either, settling and remaining still after arrival, or continually moving on the gauze for extended periods of time. Moths that did not move after settling may not end up in the sampling container of the light trap and therefore are under-represented in automated trap samples relative to their true proportions in the community. Our analyses revealed highly significant behavioural differences between moths that differed in body size. Small moths were more likely to remain stationary after settling. As a corollary, representatives of three taxa, which in Europe are predominantly small species (Nolidae, Geometridae: Eupithecini, Erebidae: Lithosiini), usually settled down immediately, whereas most other moths remained active on or flying around the trap for some time. Moth behaviour was also modulated by ambient temperature. At high temperatures, they were less likely to settle down immediately, but this behavioural difference was most strongly apparent among medium-sized moths. These results indicate the likely extent of the sampling bias when analysing and interpreting automated light-trap samples. Furthermore, to control for temperature modulated sampling bias temperature should always be recorded when sampling moths using flight-interception traps.

INTRODUCTION

Flight-interception traps using UV light as an attractant are the most widely applied method for assessing the diversity of nocturnal moths (Southwood et al., 2003; Lamarre et al., 2012; Jonason et al., 2014; Merckx & Slade, 2014). Like all survey methods light-trap samples do not perfectly mirror the true compositions of animal communities (Southwood et al., 2003; Merckx & Slade, 2014). Light intensity, spectral composition of the emitted light (Cowan & Gries, 2009; van Langevelde et al., 2011; Somers-Yeates et al., 2013), light pollution from nearby alternative illuminations, trap design (Intachat & Woiwood, 1999; Muirhead-Thompson, 2012; Bates et al., 2013) and moonlight all modulate the attraction of moths to light traps (Davies et al., 2012, 2013; Gaston et al., 2013). Other factors that influence the likelihood of moths being captured by light traps include their wing shape or flight times (Beck & Linosenmair, 2006; Beck et al., 2011; Fuentes-Montemayor et al., 2012; Lintott et al., 2014). Nevertheless, using a standardized design of light-trap is a convenient way of characterizing moth communities along ecological gradients.

Comparing catches obtained with automated light traps and hand-sampling revealed that some moth groups, especially small species of Geometridae, tend to be strongly under-sampled (Axmlacher & Fiedler, 2004; Merckx & Slade, 2014). However, the reasons for this under-representation of small moths remained obscure. So there are possibly other factors, influencing the effectiveness of automated light traps.

Temperature can modulate activity of nocturnal moths (Hrdy et al., 1996; Pinault et al., 2012) and therefore could also lead to differences in flight behaviour. Another potential, but under-explored source of the variation in capture probability is the difference in behaviour of moths after arrival at a light trap. Bates et al. (2013) report that “observations of moth behaviour at traps have shown that it is not just the proportion of moths captured by a trap but also the proportion of moths retained by a trap, that combine to influence trap capture efficiency”. For example, catches of Noctua pronuba differed significantly in their numbers depending on the type of trap used by Bates et al. (2013).
Flight-interception light traps usually consist of a sheet or cylinder of a transparent material (such as acrylic glass). Moths that collide with this obstacle may fall through the funnel into the container at the bottom of the trap. The probability of moths falling through the funnel is increased when moths are highly active in flying around the light trap, which results in them colliding many times with the obstacle. Other moths, in contrast, immediately settle on these surfaces or elsewhere on the trap and do not fall into the collecting device.

In this study we recorded moth settling behaviour at a light tower in order to determine whether the species differed in behaviour depending on their body size and taxonomic affiliation.

Our goals were to:
1. Assess whether certain moth groups (defined by body size or phylogenetic relationships) have a higher likelihood of settling down directly upon arrival at the light source, as compared to other groups; and
2. Establish if this behavioural response of moths is contingent on ambient air temperature.

Given that small moths tend to be under-represented in samples obtained using automated light traps, the expectation was that these moths might differ from large moths in their settling behaviour after arrival at a light source.

MATERIAL AND METHODS

Observations were recorded at seven locations on 13 nights in Pineta san Vitale, Parco regionale del Delta del Po (Ravenna, Italy). We sampled hygrophil forest, pine forest, downy oak forest, wetland with reed vegetation and dry and open grassland habitats. Observations were recorded from twilight (depending on the season, which on average was 9:00 PM) till 12:00 PM. Observations were terminated when hardly any moths arrived at the light trap due to low temperatures (i.e. when the temperature dropped to about 15°C in June to October 2013). As the light source, an Osram 500 W HWL lamp powered by a Honda EM 500 gasoline generator was used. The light tower consisted of a gauze cuboid, 1.80 m high with a top edge length of 0.40 m (Fig. 1). Temperature was measured directly at the light tower using a digital thermometer (Febi Bilstein 37476 Sensor). Mean night temperatures during observations ranged from 14.5°C to 28.5°C. Depending on their behaviour immediately upon arrival, moths were classified either as “settled” (if they remained at their initial landing place for longer than 30 s) or “restless” (if moths behaved otherwise). Temperature was recorded at the time of a moth’s arrival. Since this was not always possible, for a couple of records there are no temperatures. To avoid pseudoreplication all moths were then caught and kept for later determination. For practical reasons, we only considered so-called “large” moths belonging to the families Cossidae and Limacodidae and to the “Macroheterocera” sensu Regier et al. (2013).

Moths were divided into three size classes based on their wing span (big: > 40 mm, mean = 51 mm, standard error = 8.54, n = 131; medium: 30–39 mm, mean = 34 mm, standard error = 2.08, n = 765; small: < 30 mm, mean = 23 mm, standard error = 2.41, n = 317). Inspection of the frequency distribution of our data revealed that this classification yielded a rather even partitioning. Data on wing span were obtained from http://ukmoths.org.uk/ (last visited 11.10.2015) and by direct measurements of specimens when data was not available. Moths were also classified according to their systematic affiliation. Six families were explicitly considered (Geometridae, Nolidae, Noctuidae, Erebididae, Noto- dontidae, Lasiocampidae) plus two tribes (Eupitheciini within the Geometridae; Lithosiini within the Erebididae). Three other moth families (Cossidae, Limacodidae, Drepanidae) were too poorly represented in our data to warrant representation as distinct taxa in our statistical model, but were included in the analyses of size classes. Sphingidae did not appear at our light traps and hence were not included in our analysis.

We analyzed our data using the logistic regressions in the package Statistica 7.1 (StatSoft Inc.). In this analysis only those species for which more than eight individuals were observed were included. Furthermore, Generalized Linear Models (GLM) with binomial error structure and logit link function were used.

RESULTS

The regression analysis revealed that the settling behaviour of moths of the three body size classes differed. Small moths were far more likely to settle down immediately upon arrival than medium or large moths (Wald’s $\chi^2_{1319} = 62.20, p < 0.0001$; Fig. 2). The probability of settling down immediately decreased with increase in temperature (regression coefficient in logistic model: $b = -0.0882, t_{1319} = 5.612, p < 0.0001$), but this effect was largely restricted to medium-sized moths (Fig. 3). For this size category, the temperature effect was much stronger (regression coefficient in logistic model: $b = -0.1608, t_{1319} = 7.525; p < 0.0001$).

Settling behaviour was also strongly contingent on ambient temperature, but in a more complex way. GLM revealed that settling behaviour was significantly correlated with body size (df = 2, Wald’s $\chi^2 = 17.591, p = 0.0002$) and...
temperature (df = 1, Wald’s $\chi^2 = 5.284$, p = 0.0215). This effect was even more obvious when body size and temperature were combined (df = 2, p < 0.0001).

In addition, we observed highly significant differences in settling behaviour of the different moth taxa (Fig. 4; p < 0.001). Species of Eupitheciini, Lithosiini and Nolidae were more likely (60–80%) to settle down immediately after arrival at the light source. In all the other groups caught in sufficient numbers, 80% or more of the moths continued flying or crawling around after arriving at the trap. Of the Cossidae 6 of 19 moths (31.6%) settled upon arrival, of the Drepanidae 0 of 7 and of the Limacodidae 0 of 5 moths.

DISCUSSION

The settling behaviour of moths at light traps was strongly associated with their wing span, with small moths more likely to remain stationary after settling. This behaviour reflects the sampling bias towards large moths that is reported in two earlier studies (Intachat & Woiwod, 1999; Bates, 2013). We suggest that this big difference in behaviour is one of the main causes of the under-representation of small moths in the catches of automated light-traps. Our findings also indicate that moth behaviour after arrival at a trap may be modulated by ambient temperature. While in general ectothermic moths are obviously more active at high temperatures (Van Dyck, 2012), especially in medium-sized moths the probability of remaining active for some time was much higher at high air temperatures. This also makes it more likely that medium-sized moths will be caught by automated flight-interception traps at high temperatures (Van Dyck, 2012), especially in medium-sized moths the probability of remaining active for some time was much higher at high air temperatures. This also makes it more likely that medium-sized moths will be caught by automated flight-interception traps at high temperatures, whereas at low temperatures the same moths are more likely to immediately settle down when coming into contact with a light trap and thus escape being collected. If this is a general phenomenon it indicates that the efficiency of automated light traps will be constrained at low temperatures (Summerville, 2013; Jonason et al., 2014) by some kind of size-temperature interaction effect.

Generally, large moths flew around the light source for longer and were less likely to settle down immediately than small moths. This may be explained by their greater ability to store heat even at low temperatures, since moths with a large thorax have a physiological advantage in being able to retain for longer more of the heat they produce through muscle activity, whereas convective cooling acts more rapidly in small insects (Heinrich, 2013).

Since we collected all the moths that settled and remained stationary on the gauze it is unknown whether these moths would have remained inactive throughout the night or would have become active again. If moths resume activity sometime after arrival at the light trap, this could again increase their likelihood of being caught. Furthermore, the material the light trap is made of might influence the moths settling behaviour. It might be easier, especially for
large heavy moths, to settle down on gauze than on acrylic glass. To test this further studies are needed.

In this study, small moths did not differ in their behaviour at different temperatures. Both, settling and restless glass. To test this further studies are needed.

The large heavy moths, to settle down on gauze than on acrylic glass. To test this further studies are needed.

In this study, small moths did not differ in their behaviour at different temperatures. Both, settling and restless glass. To test this further studies are needed.

The large heavy moths, to settle down on gauze than on acrylic glass. To test this further studies are needed.