Host specificity of the tribe Chrysidini (Hymenoptera: Chrysidae) in Estonia ascertained with trap-nesting

MADLI PÄRN¹, VILLU SOON¹2*, TUULI VALLISOO¹, KRISTIINA HOVI¹ and JAAN LUIJG²

¹Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51014, Estonia;
e-mails: villu.soon@ut.ee; a71910@ut.ee; tuuli.vallisoos@gmail.com; kristiina.hovi@gmail.com
²Zoological Museum, Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia;
e-mail: jaan.luij@gmail.com

Key words. Hymenoptera, Chrysidae, cuckoo wasps, parasite specialization, trap nest, Chrysis, host specificity

Abstract. Cuckoo wasps (Chrysidae) are a medium-sized and widespread family of Hymenoptera whose species are generally parasitoids or cleptoparasites of solitary wasps and bees. The identities of the hosts are known from various studies and occasional records; however the utility of such data is often low due to unstable taxonomy of the species and the inappropriate methods used to determine the host species. Therefore, despite numerous publications on the subject, the host-parasite relationships of cuckoo wasps are poorly understood. Moreover, a revision of existing literature reveals that cuckoo wasps are often unreasonably considered to be unspecialized (i.e., sharing host species). In this study we use an accurate method (trap-nests) to determine the host relationships of Estonian cuckoo wasps of the genera Chrysis and Trichrysis and determine their level of specialization. 568 trap nest bundles (each containing 15–20 single reed stems) were established at 361 locations across Estonia during the vegetation periods of 2009–2011. Nests built in traps were opened and the order of cells documented in order to determine the host-parasite relationships of mason wasps and cuckoo wasps. Altogether, 5386 insects were recorded, including 12 species of Chrysidini. Hosts of all 12 cuckoo wasp species were determined and included some not previously recorded. Analysis of host-parasite relationships revealed that Estonian species of Chrysidini exhibit a greater degree of host specialization than previously thought, with only a minimal overlap in hosts between species. Such a high degree of specialization accounts for the high species diversity of cuckoo wasps, as the diversity of parasitic insects is often associated with narrow host specialization.

INTRODUCTION

Cuckoo wasps, also known as gold wasps, are a colourful family belonging to the order Hymenoptera. There are more than 3000 species in four subfamilies, of which only two, Cleptinae and Chrysidinae, occur in Europe (Kimsey & Bohart, 1991).

All cuckoo wasps are parasitoids or cleptoparasites whose hosts are mainly solitary hymenopterans. Species of the subfamily Cleptinae are parasitoids of sawflies (Tenthredinoidea), while species belonging to Chrysidinae mostly parasitize other solitary wasps and bees (Crabronidae, Megachilidae, Sphecidae, Vespidae) (Kimsey & Bohart, 1991). Chrysis, which belongs to the subfamily Chrysidinae, is the most diverse cuckoo wasp genus in northern Europe and the C. ignita species group includes most of the diversity. Revisions of the European species of this genus have led to the discovery of considerable diversity within this group, though identification of the species based on external features remains difficult (Linsenmaier, 1959; Soon & Saarma, 2011; Soon et al., 2014).

There is a fair amount of literature on the host species of cuckoo wasps, which generally indicates that mason wasps (Vespidae: Eumeninae) are the main hosts of Northern European species of Chrysis (e.g. Berland & Bernard, 1938; Morgan, 1984). Different species of Chrysis are known to exhibit different levels of host specialization. While some species are known to parasitize one species of host, others parasitize several species, from different families that differ in their ecology. According to Kimsey & Bohart (1991), the ecology of the species of Chrysis is very similar, exhibiting relatively low host specificity and specializing mainly on a particular nest type or host genus. If this is the case, the high diversity present in the group is surprising, since the species diversity of parasitic insects is generally believed to result from high host specificity (Ebeling et al., 2012). Conclusions about the low host specificity of many cuckoo wasps are based on data available in the literature, the reliability of which is rarely questioned. A critical evaluation of published records, however, is required if one is to avoid records that use inappropriate taxonomy or methods of collecting data. This is most evident in the case of older publications, with numerous records published more than 100 years ago. The taxonomy of this family and methods of study have improved considerably since then. For example, the definition of Chrysis ignita has changed considerably and field observations of wasps occurring in the same area are no longer considered to be proof of a host-parasite relationship. Despite this, old records of host-parasite relationships are often reduplicated in modern monographic studies.

* Corresponding author.
Problems related to taxonomy and nomenclature may generate misleading results when analysing host specificity. The most diverse and difficult group of cuckoo wasps in northern Europe is the *Chrysis ignita* species group (Soon et al., 2014), which has been differently treated by various authors (e.g. Kunz, 1994; Linsenmaier, 1997; Smissen, 2010). *C. ignita* was among the first cuckoo wasps described by Linnaeus (1758) and since then numerous new species have been separated from it, but these species are not generally widely accepted. While the taxonomy of a few northern European species in this species group is relatively stable (i.e. *Chrysis fulgida* and *C. iris*), due to their distinctive colouration, treatment of most others has been unstable. The differing treatment of the species in the *C. ignita* group reflects the lack of distinct morphological features within this group. Moreover, there are cryptic species in this group (Soon & Saarma, 2011; Soon et al., 2014). Thus, the taxon identities of the more problematic groups in the literature need to be treated with care (Schmid-Egger et al., 1995).

Another likely reason for incorrect conclusions about host-parasite relationships is the use of unsuitable methods for collecting data. Research into the host-parasite relationships of cuckoo wasps has seldom been the main topic of studies; rather, such data often represent a secondary outcome or result from unplanned observations. Therefore, the suitability of the research methods for addressing host-parasite relationships has not generally been a primary concern. Much of the published evidence on cuckoo wasp host specificity comes from observations on a particular species near the nest of a potential host (e.g. Smith, 1858; Ashmead, 1894; Balthasar, 1943; Asis et al., 1991). Although some studies include more detailed descriptions of cuckoo wasp behaviour near the nest of a potential host, describing excavation and/or entrance into nests, all such cases are only observations on a potential host not evidence of parasitization. Another frequently used indirect method for revealing the host-parasite relationships of cuckoo wasps is based on the occurrence of potential hosts within a given area (e.g. Heinrich, 1964; Gayubo et al., 1987). While this method is useful for identifying potential hosts it again is not evidence of a host-parasite relationship.

Furthermore, numerous publications list hosts but do not cite the source of the data or present an adequate description of the methods (e.g. Balthasar, 1942; Doronin, 1996; Schneider, 1997; Smissen, 2001). Therefore, it is not possible to determine the reliability of the host-parasite relationships presented in such publications.

In addition, host specialization is not static and may change over time (Habermannová et al., 2013). Therefore, host-parasite relationships determined 100 years ago describe the insect communities at that time, which may differ from the present situation.

Thus, a truly reliable host relationship depends on recording a cuckoo wasp hatching from a host nest the identity of which is well established. Only a few of the published host-parasite relationships of cuckoo wasps are based on the rearing of these wasps from the nests of hosts, since nests are not easy to find or transfer to a laboratory for breeding (Enslin, 1933; Tormos et al., 2009).

The introduction of the trap-nest method has improved the situation significantly. Many solitary wasps and bees build their nests in cavities including abandoned burrows in wood or hollow plant stems. Such wasps and bees also adopt artificial cavities such as reed or bamboo straws (Budrién et al., 2004; Budrys et al., 2010; Matsumoto & Makino, 2011), or blocks of wood with holes of different diameter drilled into them (Krombein, 1967; Alves-dos-Santos, 2003; Matsumoto & Makino, 2011).

Trap-nests have mainly been used to determine the species composition of communities in various ecological studies (Tscharntke et al., 1998; Gathmann & Tscharntke, 1999; Klein et al., 2002; Matsumoto & Makino, 2011). As with the approaches described above, these studies have generally provided data on the host-parasite relationships of cuckoo wasps as a side product. Hence, some of the methods used could have provided misleading data. For example, nest usurpation is a common phenomenon (Benno, 1950; Krombein, 1967; Schneider, 1991; Černá et al., 2013) in which two or more potential species of hosts inhabit the same nest cavity. Usually this is not taken into consideration as all species emerging from the same trap cavity are expected to be inhabitants of the same nest. To determine the hosts of cuckoo wasps with certainty, it is important to open trap-nests, determine the order of the cells in it and rear the contents of each cell separately (Cooper, 1953; Medler, 1964; Krombein, 1967; Boes et al., 2005). In this way it is possible to detect nest usurpation and take it into consideration in order to avoid incorrect conclusions concerning host specificity.

HYPOTHESES

Due to the lack of uniformity in the taxonomic treatments and methods used to determine host species, we consider the conclusion that *Chrysis* exhibits relatively low host specificity to be unreliable. Moreover, high host specificity, which is currently believed to exist, could account for the high diversity of cuckoo wasps in this genus. The main objective of this study is to evaluate the host specificity of cuckoo wasps by using trap-nests. We aim to test the following hypotheses:

1. Cuckoo wasps have narrower host ranges than currently believed.
2. There is no overlap in the host species of different species of cuckoo wasp.
3. Cuckoo wasp species prefer a specific host even when other potential hosts are present.

MATERIAL AND METHODS

This study is based on material collected from trap-nests that were placed at 361 locations across Estonia (Fig. 1) over three consecutive years from 2009 until 2011. Trap-nests were made of stems of common reed (*Phragmites australis*) tied together in bundles of 15–20 with tape, with each bundle containing straws of different diameters. Altogether, 568 bundles were prepared, and 1–10 were placed at each location in June. Trap-nests were attached to various substrates at heights ranging from one to two
RESULTS

Three hundred and sixty one of the 568 trap-nest were used by wasps and bees, which produced 6023 nest cells of which 5386 (89.4%) produced insects, which are now in the collection of the Zoological Museum, Natural History Museum of University of Tartu. All of the potential host species (i.e. excluding parasites such as: Ichneumonoidea, Braconidae, Eulophidae, Pteromalidae and Gasteruptiidae) are listed in Table 1, along with the numbers of specimens and all of the possible host relationships. The most numerous of them were mason wasps (Eumeninae), crabroid wasps (Crabronidae), leafcutter bees (Megachilidae) and plasterer bees (Colletidae). There were 19 species belonging to five genera of the mason wasp subfamily: Ancistrocerus, Symmorphus, Discocerus, Euodynerus and Gymnомерus, and 14 species belonging to 7 genera of Crabronid wasps with Trypoxylon being the most abundant. Cuckoo wasps were represented by only two genera – Chrysis and Trichrysis. There were 438 specimens of 11 different species of the genus Chrysis, with Chrysis solida, C. angustula, C. corusca, and C. fulgida the most abundant. At least one individual of each cuckoo wasp species hatched from a cell adjacent to a potential host enabling the determination of the host. All hosts of the genus Chrysis belonged to the following genera: Ancistrocerus, Symmorphus, Discocerus and Euodynerus. Most of the species of cuckoo wasps parasitized only one host species, but species with a wider host range were also present e.g. C. angustula, C. fulgida, C. iris, C. solida and Trichrysis cyanea. Nest sharing by potential hosts was recorded in 42 straws from which two potential host species emerged (details not presented).

Below we list the results of our study of each of the cuckoo wasp species caught, including their host-parasite relationships. The total number of instances of a species of cuckoo wasp being reared from the nest of a host is given along with the level of confidence (certain/dubious) based on the position of the parasitized cell relative to host cells. In addition, the number of occasions on which the host species was not determined is also given. The results of the statistical analyses of the host preferences of C. angustula,
Table 1. List of the potential hosts reared from trap-nests and their documented relationships with cuckoo wasps. Numbers of specimens of the genus *Hylaeus* are only those recorded in 2010. Primary host species are marked with a plus (+), less preferred host species or less reliably documented relationships are marked with an asterisk (*).

<table>
<thead>
<tr>
<th>Potential host species</th>
<th>Total number of specimens reared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancistrocerus antilope (Panzer, 1798)</td>
<td>169</td>
</tr>
<tr>
<td>A. claripennis Thomson, 1874</td>
<td>18 *</td>
</tr>
<tr>
<td>A. ichneumonideus (Ratzburg, 1844)</td>
<td>3</td>
</tr>
<tr>
<td>A. parietinus (Linnaeus, 1761)</td>
<td>89 *</td>
</tr>
<tr>
<td>A. parietum (Linnaeus, 1758)</td>
<td>37</td>
</tr>
<tr>
<td>A. trifasciatus (Müller, 1776)</td>
<td>1219 * * +</td>
</tr>
<tr>
<td>Symmophus allobroges (Saussure, 1855)</td>
<td>186 * +</td>
</tr>
<tr>
<td>S. angustatus (Zetterstedt, 1838)</td>
<td>3</td>
</tr>
<tr>
<td>S. bifasciatus (Linnaeus, 1761)</td>
<td>552 * +</td>
</tr>
<tr>
<td>S. connexus (Curtis, 1826)</td>
<td>13</td>
</tr>
<tr>
<td>S. crassicornis (Panzer, 1798)</td>
<td>50 +</td>
</tr>
<tr>
<td>S. debilis (Zetterstedt, 1785)</td>
<td>149 +</td>
</tr>
<tr>
<td>S. gracilis (Brulle, 1832)</td>
<td>125</td>
</tr>
<tr>
<td>S. murarius (Linnaeus, 1758)</td>
<td>14 *</td>
</tr>
<tr>
<td>Discoelius dufouri (Lepeletier, 1841)</td>
<td>1</td>
</tr>
<tr>
<td>D. zonalis (Panzer, 1801)</td>
<td>239 +</td>
</tr>
<tr>
<td>Euodynerus notatus (Jurine, 1807)</td>
<td>223 +</td>
</tr>
<tr>
<td>E. quadripectarsus (Fabricius, 1793)</td>
<td>10</td>
</tr>
<tr>
<td>Gymnocus laevis (Shuckard, 1837)</td>
<td>4</td>
</tr>
<tr>
<td>Cossus serulatus (Dahlbom, 1845)</td>
<td>3</td>
</tr>
<tr>
<td>Nitella borealis (Valkeila, 1974)</td>
<td>5</td>
</tr>
<tr>
<td>Passaloecus corniger Shuckard, 1837</td>
<td>1</td>
</tr>
<tr>
<td>P. insignis (Vander Linden, 1829)</td>
<td>5</td>
</tr>
<tr>
<td>P. singularis Dahlbom, 1844</td>
<td>7</td>
</tr>
<tr>
<td>P. turionum Dahlbom, 1844</td>
<td>8</td>
</tr>
<tr>
<td>Pemphredon mortier Valkeila, 1972</td>
<td>2</td>
</tr>
<tr>
<td>Pseudos brevirarbis Merisuo, 1937</td>
<td>24</td>
</tr>
<tr>
<td>P. concor (Dahlbom, 1843)</td>
<td>51</td>
</tr>
<tr>
<td>P. pallipes (Panzer, 1798)</td>
<td>4</td>
</tr>
<tr>
<td>Rhopalium claripes (Linnaeus, 1758)</td>
<td>15</td>
</tr>
<tr>
<td>Trypoxylon clavicerum (Lepeletier & Serville 1828)</td>
<td>17</td>
</tr>
<tr>
<td>T. figulus (Linnaeus, 1758)</td>
<td>244 +</td>
</tr>
<tr>
<td>T. minis Beaumont, 1945</td>
<td>20 *</td>
</tr>
<tr>
<td>Agenioideus cinctellus (Spinola, 1808)</td>
<td>3</td>
</tr>
<tr>
<td>Anoplus cinnamomus (Aurivillius, 1907)</td>
<td>15</td>
</tr>
<tr>
<td>Aulopus carbonarius (Scopoli, 1763)</td>
<td>28</td>
</tr>
<tr>
<td>Dipogen bifax (Geoffroy, 1785)</td>
<td>37</td>
</tr>
<tr>
<td>D. subintermedius (Maggetti, 1886)</td>
<td>50</td>
</tr>
<tr>
<td>Anthophora farcata (Panzer, 1798)</td>
<td>3</td>
</tr>
<tr>
<td>Chelostoma rapunculini (Lepeletier, 1841)</td>
<td>11</td>
</tr>
<tr>
<td>Heriades truncorum (Linnaeus, 1758)</td>
<td>52</td>
</tr>
<tr>
<td>Hylaeus hookeri (Cockerell, 1924)</td>
<td>92</td>
</tr>
<tr>
<td>H. communis Nylander, 1852</td>
<td>256</td>
</tr>
<tr>
<td>H. difformis (Eversmann, 1852)</td>
<td>28</td>
</tr>
<tr>
<td>Megachile centuncularis (Linnaeus, 1758)</td>
<td>36</td>
</tr>
<tr>
<td>M. lapponica Thomson, 1871</td>
<td>31</td>
</tr>
<tr>
<td>M. ligniariae (Kirby, 1820)</td>
<td>23</td>
</tr>
<tr>
<td>Osmia caerulescens (Linnaeus, 1758)</td>
<td>40</td>
</tr>
<tr>
<td>O. bicornis (Linnaeus, 1758)</td>
<td>8</td>
</tr>
</tbody>
</table>
The results showed a preference for one host over the other due to the low number of locations. Although the variable “location” was included as a fixed effect in the analysis because too few (14) individuals were reared during this study. Also the variable “location” was included as a fixed effect due to the low number of locations. Although the results showed a preference for one host over the other (p = 0.032), host abundance itself was not significant and therefore there was no evidence of host-switching.

C. gersii Guérin, 1842
- Total: 4 specimens.
- *Euodynerus notatus*: 2 certain, 2 dubious.

C. impressa Schenck, 1856
- Total: 12 specimens
- *Ancistrocerus claripennis*: 3 dubious.
- *A. parietinus*: 3 dubious.
- *A. trissectus*: 1 dubious.
- Host undetermined: 5.

C. iris Christ, 1791
- Total: 28 specimens.
- *Symmorphus albolobrogus*: 1 certain, 12 dubious.
- *S. bifasciatus*: 1 dubious.
- *S. crassicornis*: 1 dubious.
- Host undetermined: 13.

C. leptomandibularis Niehuis, 2000
- Total: 1 specimen.
- *Symmorphus debilisatus*: 1 dubious.

C. pseudobrevitarsis Linsenmaier, 1951
- Total: 3 specimens.
- *Euodynerus notatus*: 1 certain, 1 dubious.

C. schencki Linsenmaier, 1968
- Total: 2 specimens.
- From *Ancistrocerus trifasciatus*: 2 dubious.

C. solida Haupt, 1957
- Total: 120 specimens.
- *Ancistrocerus trifasciatus*: 26 certain, 33 dubious.
- *Euodynerus notatus*: 1 certain.
- *Symmorphus debilisatus*: 2 dubious.
- Host undetermined: 58.
- There was no preference for either of the two host species, *Euodynerus notatus* and *Ancistrocerus trifasciatus* (p = 0.37), and the relative abundances of the host species also had no significant effects, indicating no host preference or host-switching (Table 2). *Symmorphus debilisatus* was not included in the analysis, because this species was only recorded as a host of *C. solida* in a single nest, from which the cuckoo wasp emerged from the outermost cell.
- Despite the low power of this analysis *A. trifasciatus* is considered to be the main host of *Chrysis solida* in Estonia because of the numerous records of it being reared in association with this species.

Trichrysis cyanina (Linnaeus, 1758)
- Total: 41 specimens.
- *Anoplius caviventris*: 1 dubious.
- *Auplopus carbonarius*: 1 certain, 2 dubious.
- *Dipogin bifasciatus*: 1 dubious.
- *Trypoxylon figulus*: 6 certain, 19 dubious.
- *Trypoxylon minus*: 2 dubious.
- Host undetermined: 11.

Table 2. Host preferences of Chrysis angustula (N = 621), C. fulgida (N = 140) and C. solida (N = 386) determined using a test of type III fixed effects. The effects of host species and relative abundance of potential hosts on the degree of parasitization (dependent variable) were tested using linear mixed models, num DF = degrees of freedom numerator, den DF = degrees of freedom denominator, Pr > F = significance level.

<table>
<thead>
<tr>
<th>Effect</th>
<th>num DF</th>
<th>den DF</th>
<th>F value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysis angustula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host species</td>
<td>3</td>
<td>614</td>
<td>9.44</td>
<td><0.001</td>
</tr>
<tr>
<td>Symmorphus albolobrogus</td>
<td>1</td>
<td>17.49</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>S. bifasciatus</td>
<td>1</td>
<td>15.86</td>
<td>0.10</td>
<td>0.75</td>
</tr>
<tr>
<td>S. debilisatus</td>
<td>1</td>
<td>54.21</td>
<td>0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>Chrysis fulgida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host species</td>
<td>1</td>
<td>137</td>
<td>4.69</td>
<td>0.032</td>
</tr>
<tr>
<td>Symmorphus bifasciatus</td>
<td>1</td>
<td>137</td>
<td>0.06</td>
<td>0.81</td>
</tr>
<tr>
<td>Chrysis solida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host species</td>
<td>1</td>
<td>383</td>
<td>0.79</td>
<td>0.37</td>
</tr>
<tr>
<td>Ancistrocerus trifasciatus</td>
<td>1</td>
<td>35.1</td>
<td>2.46</td>
<td>0.13</td>
</tr>
</tbody>
</table>

C. fulgida and *C. solida* are presented in Table 2 and explained below in the respective species sections.

Chrysis angustula Schenck, 1856
- Total: 111 specimens.
- *Ancistrocerus trifasciatus*: 4 dubious.
- *Symmorphus albolobrogus*: 2 certain.
- *S. bifasciatus*: 23 certain, 41 dubious.
- *S. debilisatus*: 1 dubious.
- Host undetermined: 40.
- *Chrysis angustula* showed host preference (p < 0.001; Table 2), but as the relative abundances of alternative hosts did not have significant effects, there was no evidence of host-switching. Since there were more than two host species, a Tukey-Kramer method was used to make pairwise comparisons: this indicated a preference for *Symmorphus bifasciatus* over *S. albolobrogus* (p = 0.012) and *Ancistrocerus trifasciatus* (p < 0.001).

C. corusca Valkella, 1971
- Total: 71 specimens.
- *Symmorphus gracilis*: 9 certain, 12 dubious.
- Host undetermined: 50.

C. equestris Dahlbom, 1854
- Total: 19 specimens.
- *Discoelius zonalis*: 11 certain, 8 dubious.

C. fulgida Linnaeus, 1761
- Total: 66 specimens.
- *Symmorphus bifasciatus*: 7 certain, 4 dubious.
- *S. crassicornis*: 3 certain, 13 dubious.
- *S. murarius*: 2 dubious.
- Host undetermined: 37.
- *Symmorphus crassicornis* was preferred over *S. bifasciatus* (Table 2). *Symmorphus murarius* was omitted from the analysis because too few (14) individuals were reared during this study. Also the variable “location” was included as a fixed effect due to the low number of locations. Although the results showed a preference for one host over the other
DISCUSSION

Eleven of the 25 Estonian species of *Chrysis* and a single representative of the genus *Trichrysis* were collected using trap-nests. As some Estonian species of *Chrysis* parasitize ground-nesting host species, the eleven species make up most of the species that parasitize cavity-nesting wasps. All of these species exhibited some degree of specialization to a particular host species.

While all species of cuckoo wasps were associated with at least one host species the overall efficiency of detecting host species with the method used was rather low. For 478 of the cuckoo wasps that emerged the host could not be determined for nearly half of them. The main reason for this was that all the cells of a nest were parasitized and therefore no host emerged. Although this problem was detected during the first year (2009) of field-work and breeding in laboratory we could not prevent it. The risk of all nest cells being parasitized can be slightly reduced by providing longer nesting cavities. With more cells in one nest the chances of at least some host specimens escaping parasitism within the same nest is higher, which enables the founder of the nest to be determined.

Only single species of hosts were recorded for *Chrysis equestris* and *C. corpusa*. Nineteen individuals of *C. equestris* were reared from trap-nests (all in 2011) and 11 of them parasitized *Discoelius zonalis*. This mason wasp species is recorded in the literature as a host of *C. equestris*, although with little supporting evidence (Wiesner, 2006). Literature on the host relationships of *C. corpusa* is practically nonexistent, because it has only been regarded as a distinct species for about 15 years. The only trustworthy claim comes from the work of Steffan-Dewenter & Leschke (2003), which mentions the host is a species of mason wasp. In the current study *Symmophus gracilis* was determined as the host species on 9 occasions and 12 *C. corpusa* were reared from an outermost cell of the same host’s nest. The reason for our inability to determine the host of 50 specimens is that on most occasions *C. corpusa* parasitized all the brood cells within a nest. This is likely the result of the cuckoo wasp habit of continuously inspecting the nest of a host and laying eggs whenever nest development is at an appropriate stage (Linsenmaier, 1997).

Some of the species of cuckoo wasps were relatively rare in the trap-nests and therefore, despite being able to determine their host(s), the data remained too limited to allow statistical analysis. These species were: *C. graelsii*, *C. leptomandibularis*, *C. pseudobrevitarsis* and *C. schencki*. Only single specimens of *C. graelsii* and *C. pseudobrevitarsis* were reared from the middle cells of the nests of their host, which was *Euodynerus notatus* on both occasions. This species has been previously mentioned as a host of both these species of cuckoo wasps (Herrmann, 1996; Saure, 1998). None of these cuckoo wasp species are rare in Estonia, and their rarity in mason wasp nests in trap-nests is surprising.

Six species of the cuckoo wasps collected apparently parasitized several hosts: *Chrysis angustula*, *C. fulgida*, *C. impressa*, *C. iris*, *C. solida* and *Trichrysis cyanea*, all of which parasitized at least two host species. Unfortunately, on all four occasions, specimens of *C. impressa* hatched from an outermost cell of a host nest, so host nest sharing cannot be excluded. However, since *Ancistrocerus parietinus* was the host in two of these cases, it increases the likelihood that it is a host. Moreover, this mason wasp is also listed as a host of *C. impressa* in the literature (Morgan, 1984). Although *Ancistrocerus trifasciatus* was also determined as a host (although only based on emergence from one outermost cell and thus uncertain), we consider it unlikely that it is an important host of this cuckoo wasp. The potter wasp was very abundant in trap nests, but only once recorded in close proximity to *C. impressa*, which is also rather common, and even then as an unconfirmed host.

Although many *C. iris* were reared from the trap-nests, we collected insufficient reliable data for a statistical analysis of its host-parasite relationships. *Symmophus allobrogus* was the only definite host of *C. iris*, and the single instances of emergence from the nests of *S. bifasciatus* and *S. crassicornis* remain dubious, as the parasite emerged from the outermost cell on both occasions. *S. allobrogus* has not been recorded as a host of this cuckoo wasp before, but both *S. crassicornis* and *S. murarius* are recorded as hosts in earlier literature (Abeille de Perrein, 1879; du Buyssons, 1891–1896; Alfken, 1915). It is possible that *S. allobrogus* is the preferred host of *C. iris* in Estonia, while other hosts are used in Western Europe.

Chrysis angustula, *C. fulgida* and *C. solida* were abundant and all had more than one potential host. Therefore, we ran a statistical analysis to determine whether one host species was preferred over another. All potential hosts were included in the analysis for *C. angustula*, although it was apparent that the data on *S. debilitatus* and *S. allobrogus* were limited. As expected, the results demonstrated two significant relationships: *S. bifasciatus* was preferred over both *S. allobrogus* and *Ancistrocerus trifasciatus*, which means that *S. bifasciatus* was the preferred host species. It was not possible to compare *S. bifasciatus* and *S. debilitatus* due to insufficient data for *S. debilitatus*. There was also no evidence of host-switching, since the percentage parasitism of a host species was not significantly dependent on the abundance of the other potential hosts.

With five different host species *Trichrysis cyanea* was the least specialized cuckoo wasp, but there was insufficient data for a statistical analysis of its preferences. This cuckoo wasp is known to be a generalist parasitizing nests of various cavity nesting wasps and bees (Tormos et al., 1996; Gathmann & Tcharntke, 1999). Nevertheless, most of its host species were not detected with certainty in this study and it appears that *Trypoxylon figulus* is the main host of this species in Estonia. Curiously all the host species store spiders for their offspring, which indicates that this species might be a specialist of a particular type of food provision rather than of a particular host. Nevertheless this is unlikely since *T. cyanea* is reported as parasite of various wasps storing a different type of food, i.e. *Pemphredon lethifer* and *Psenulus pallipes*, which store aphids (Tormos et al., 1996).
Despite being reared from the nests of *Symmophus bifasciatus* on most occasions, statistical analysis indicate that *S. crassicornis* was the preferred host of *Chrysis fulgida*. Thus, while *C. fulgida* was attracted to the nests of both hosts, the common *S. bifasciatus* was parasitized only when there were no nests of the preferred host. The ability to parasitize a more abundant host in addition to the preferred host is a good strategy, which enables individuals to survive in less favourable situations, while retaining its own niche as a parasite of the less common species.

Although two different hosts were determined for *C. solidida* it was clearly a specialist on *Ancistrocerus trifasciatus*, and the single certain record of *E. notatus* is an infrequent alternative. However, no significant preference was recorded for either host due to limited data, as both species were only present at two locations.

Based on the results, it can be concluded that there is little overlap in the host species of species of the genus *Chrysis* in Estonia (Table 1). Although both *C. angustula* and *C. fulgida* used *Symmophus bifasciatus* as a host, it was only the primary host of *C. angustula* and the less preferred host of *C. fulgida*, which was only parasitized when the preferred host was rare. *Chrysis graelsii* and *C. pseudobrevitarsis* were exceptional in that both parasitized the same host species, *Eutodynerus notatus*. In this case both cuckoo wasp species are competing for the same resource. Nevertheless this is not contrary to the theory of host specialization as a driver of speciation since these cuckoo wasps are from different species groups and therefore specialization on this host may have evolved independently. Alternatively, one of these cuckoo wasps may have a different species as its primary host, but further data would be needed to determine this.

Reliable data is too limited to determine trends in host selection of cuckoo wasps at a geographic scale. However, differences in host specialization in different areas are likely since the distribution areas of the cuckoo wasps studied reach central Europe and beyond, where more potential host species are available than in northern Europe. Moreover, the abundances of host species differ in areas with different climates, which would affect the availability of the different hosts even when the same host species are present. Generally it appears that cuckoo wasps specialize on parasitizing a single species or limited number of related species. This is supported by the fact that most of the host records determined in this study have been recorded elsewhere. For example *C. angustula* is reported as a parasite of *Ancistrocerus trifasciatus*, *Symmophus bifasciatus* and *S. debilitatus* in Germany (Lith, 1958; Wickl, 2001; Steffan-Dewenter & Leschke, 2003). In addition, *S. conexus* is reported as its host in Germany (Wickl, 2001). Although this mason wasp was also recorded in our study it is a very rare species in Estonia where it has no importance as a host of *C. angustula*. Specialization on a limited number of closely related species occurs in *C. iris*, which is known to be a parasite of *Symmophus murarius* in Germany (Alfken, 1915) and *S. crassicornis* in France (Buysson, 1891–1896) but was bred mostly from the nests of *S. allobrogus* in our study. Although we have no data on the abundance of these three species of *Symmophus* in European countries it is likely that this cuckoo wasp selects different species of this genus as hosts depending on their availability.

Several published host-parasite relationships were not confirmed by this study despite both the host and parasite species being recorded in the trap-nests. Strikingly, this included host species that were frequently recorded in trap nests like *Ancistrocerus antilope*, which is known to be a host of *C. longula* and *C. pseudobrevitarsis* (Brechtl, 1986; Schmid-Egger et al., 1995); *Symmophus bifasciatus*, which is recorded as a host of *C. solidida* (Wickl, 2001); and *Trypoxylon figulus*, which is recorded as a host of *C. angustula* and *C. fulgida* (Linsenmaier, 1959; du Buysson, 1891–1896). We cannot exclude the possibility that these host-parasite relationships were not found due to different host preferences in different regions or just due to chance. However, it is also likely that the earlier host-parasite records are erroneous as they were based on inappropriate methods that did not take into account the possibility of nest usurpation (more than one potential host species in a nest).

C. ignita is known to be a parasite of numerous cavity nesting wasps and bees, making it one of the least specialized cuckoo wasps (Tormos et al., 2007). Among the hosts of this cuckoo wasp we recorded the following species in trap-nests (source identifying a species as a host of *C. ignita* is given in parentheses): *Ancistrocerus antilope* (Gathmann & Tcharntke, 1999), *A. parietinus* (Gathmann & Tcharntke, 1999), *A. parietum* (Morgan, 1984), *A. trifasciatus* (Pettit, 1987), *Gymnonomerae laevipes* (Benno, 1957), *Osmia bicornis* (Schneider, 1991), *Symmophus bifasciatus* (Wagner, 1938), *S. murarius* (Trautmann & Trautmann, 1919) and *Trypoxylon figulus* (Coudrain et al., 2013). Although *C. ignita* is not rare in Estonia, we did not record it in trap-nests, which could be explained by a narrower host selection of this cuckoo wasp. Evidently, species of the *C. ignita* species group were not identified in some of the above studies, and some species were not split from *C. ignita* at the time of the earlier studies. Therefore, unless it is known that *C. ignita* sensu stricto was the parasite such host records are for *C. ignita* in the wide sense (sensu lato).

Our study revealed that cuckoo wasps have far narrower host preferences than indicated in the literature. Their niches overlap minimally, enabling high species diversity to persist without species competing intensely for hosts. At the same time, narrow specialization places species at a higher risk of extinction, due to their high dependency on the existence of a particular host species.

ACKNOWLEDGEMENTS. The authors would like to express their gratitude to T. Tammaru and A. Kaasik for help with the statistical analysis and to J. Davison for editing the English. We would also like to thank the two anonymous reviewers for their useful comments and suggestions for improving this manuscript. This study was financed by the Estonian Ministry of Education and Research (target-financed project SF0180122S08 and institutional research funding grant no IUT20-33), the Estonian Science Foundation (grants no. 7558 and 9174) and the European Union.
through the European Regional Development Fund (Center of Excellence FIBIR).

REFERENCES

Sauré C. 1998: Beobachtungen und Anmerkungen zur Wirtsbin- dung einiger Goldwespenarten im nordostdeutschen Raum (Hy-

breitung, Ökologie und Gefährdungssituation. — Fauna Flora
Rheinland-Pfalz 16: 1–292.

Schneider N. 1991: Contribution à la connaissance des Arthropo-

Schneider N. 1997: Inventaire général et atlas provisoire des Eu-

Smissen J. v. d. 2001: Die Wildbienen und Wespen Schleswig-

Smissen J. v. d. 2010: Schlüssel zur Determination der Gold-
wespen der engeren ignita-Gruppe (Hymenoptera Aculeata:
43: 4–184.

Smith F. 1858: Tribe III. Diploptera. Fam. 1. Eumenidae. In: Cat-
ologue of British Fossorial Hymenoptera, Formicidae, and Ves-
pidae in the Collection of the British Museum. British Mu-
seum (Natural History), London, pp. 196–211.

Soon V. & Saarma U. 2011: Mitochondrial phylogeny of the Chry-
sis ignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny re-

Steffan-Dewenter I. & Leschke K. 2003: Effects of habitat man-
gagement on vegetation and above-ground nesting bees and wasps of orchard meadows in Central Europe. — Biodivers.

Tornos J., Asis J., Gayubo S. & Mingo E. 1996: Description of the mature larvae of Chrys is gracillima and Omalus biacinc-
tus and new data on the biology of Trichrysis cyanae (Hymen-

Tornos J., Asis J.D., Polidori C. & Boesi R. 2007: Host associa-
tion in Chrys is fulgida L. and description of its prepupa (Hy-

Trautmann G. & Trautmann W. 1919: Die Goldwespenfauna

Tscharntke T., Gathmann A. & Steffan-Dewenter I. 1998: Bioindication using trap-nesting bees and wasps and their natu-
ral enemies: community structure and interactions. — J. Appl.
Ecol. 35: 708–719.

Wagner A.C.W. 1938: Die Stechimmen (Aculeaten) und Gold-

Wickl K. 2001: Goldwespen der Oberpfalz (Hymenoptera: Chry-

Wiesner T. 2006: Beitrag zur Hautflüglerfauna von Brandenburg – Neu- und Wiederfunde Aculeate Hymenopteren (Hymeno-
ptera: Chrysididae, Vespidae, Pompilidae, Crabronidae, Tiphii-

Received May 28, 2014; revised and accepted September 25, 2014
Prepublished online October 20, 2014