Exploitation of kairomones and synomones by Medetera spp. (Diptera: Dolichopodidae), predators of spruce bark beetles

JIRI HULCR¹, MARC POLLET², KAREL UBIK³ and JAN VRKOČ³

¹Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic and Department of Entomology, Texas A & M University, College Station, TX 77843-2475, USA; e-mail: jirihulcr@tamu.edu
²Research Group Terrestrial Ecology (TEREC), University of Ghent (UGent), K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium and Dept Entomology, Royal Belgian Institute of Natural Sciences (KBIN), Vautierstraat 29, B-1000 Brussels, Belgium
³Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Key words. Dolichopodidae, Medetera setiventris, Medetera melancholica, predator, Ips typographus, Pityogenes chalcographus, Picea abies, volatiles, semiochemicals, kairomones, pheromones, monoterpenes

Abstract. The semiochemical relationships in a predator-prey-host plant system were studied by a series of multiple-choice field assays. The studied system included predatory flies of the genus Medetera (Diptera: Dolichopodidae), the bark beetles Ips typographus and Pityogenes chalcographus (Coleoptera: Curculionidae: Scolytinae) as prey and Norwegian spruce (Picea abies) as the host plant. Of the nine species of predators collected, only Medetera setiventris and Medetera melancholica provided sufficient data for statistical analysis. The response of the predators to monoterpenic products of the host (alpha-pinene, limonene, camphor), pheromone compounds of Ips typographus (S-cis-verbenol and 2-methyl-3-buten-2-ol) and a mixture of the pheromones of I. typographus and P. chalcographus were investigated. Our field trials revealed that tree volatiles plus pheromones of the prey, and a pheromone mixture of both prey species were considerably more attractive to Medetera setiventris and Medetera melancholica than the individual chemicals. Medetera seem to respond to the stage of tree decay and the intensity of bark beetle infestation via the ratios of tree volatiles and/or prey pheromones.

INTRODUCTION

Although few biological control programs have been successful in forestry (Berrymen, 1967; Zondag, 1979; Lawson & Morgan, 1992; Fielding & Evans, 1997), several studies have explored the possibility of using natural predators as biocontrol agents of bark beetles (Coleoptera: Curculionidae: Scolytinae) (Berrymen, 1967). Some authors suggest that the natural populations of predators might be manipulated by using semiochemicals (Aukema et al., 2000). However, this approach requires a thorough knowledge of the olfactory ecology of all the species involved, which is not yet available.

Several studies suggest that insects of the genus Medetera Fisher von Waldheim (Diptera: Dolichopodidae) are important predators of bark beetles worldwide (Nuorteva, 1956; Beaver, 1965; Bickel, 1987; Dippel et al., 1997; Hedgren & Schroeder, 2004). Medetera larvae inhabit galleries made by scolytid beetles in the bark of trees, and feed on scolytid eggs, larvae, pupae and emerging adults. Only rarely are Medetera reported to have little (Mills, 1985) or no impact on bark beetle populations (Kishi, 1969). In addition, some species of Medetera are efficient natural biocontrol agents even in spruce plantations (Westien & Schroeder, 1999). Kolubajiv (1958) reported difficulties in rearing Medetera in the laboratory.

Despite the potential significance of the genus Medetera in forestry, there are few studies on their ecology and behavior. Ounap (2001) gives a summary of the current knowledge of the ecology of Medetera, Nicolai (1995) and Dippel et al. (1997) of Medetera as the host plant. Of the nine species of predators collected, only Medetera setiventris and Medetera melancholica provided sufficient data for statistical analysis. The response of the predators to monoterpenic products of the host (alpha-pinene, limonene, camphor), pheromone compounds of I. typographus (S-cis-verbenol and 2-methyl-3-buten-2-ol) and a mixture of the pheromones of I. typographus and P. chalcographus were investigated. Our field trials revealed that tree volatiles plus pheromones of the prey, and a pheromone mixture of both prey species were considerably more attractive to Medetera setiventris and Medetera melancholica than the individual chemicals. Medetera seem to respond to the stage of tree decay and the intensity of bark beetle infestation via the ratios of tree volatiles and/or prey pheromones.

Olfactory communication plays an important role in predator-prey relationships, especially in the detection of particular species of prey (Foster & Harris, 1997). At present, little information is available on olfactory perception in Medetera species. Rudinsky et al. (1971) discovered that a solution of the primary attractants (synomones released by spruce) alpha-pinene, beta-pinene, camphene and limonene in ethanol is attractive to Medetera. The North American species, Medetera aldrichii Wheeler, 1899, perceives alpha-pinene as both an attractant and oviposition stimulus (Fitzgerald & Nagel, 1972). In another American species, Medetera bistrata Parent, 1929, alpha-pinene alone does not elicit a response, but increases the attractiveness of bark beetle kairomones (Williamson, 1971). Although this species can also discriminate between individual compounds in its prey’s pheromones, it does not respond to the individual compounds, but is strongly attracted by a mixture of the components. A mixture containing a prey
inhibitory compound is particularly attractive. There appear to be no similar studies on the response of European Medetera to bark beetle kairomones.

Olfactory relationships between I. typographus and some of their coleopteran predators and hymenopteran parasitoids are better understood. The strongest attractant for Thanasimus formicarius L. (Coleoptera: Cleridae) appears to be the pheromone blend of its prey I. typographus (Hansen, 1983). T. formicarius is strongly attracted to the compounds that bark beetles use as intraspecific repellents and less to those acting as intraspecific attractants (Bakke & Kvamme, 1981). Also there is evidence that synomones produced by host tree attacked by the bark beetles play a role in the olfactory orientation of T. formicarius, and antennal receptors for α-pinene are described for this species (Hansen, 1983). Moreover, T. formicarius also seems to respond to the pheromones of other bark beetle species as to kairomones (Tommeras, 1988; Zürm, 1988).

Hymenopteran parasitoids of I. typographus are attracted to oxidized monoterpenes such as camphor and isopinocamphol, which indicate advanced development of bark beetle brood (Pettersson, 2001, Pettersson & Boland, 2003). Since these parasitoids oviposit on bark beetle larvae in a late stage of development, their olfactory preferences correspond with factors that determine their reproductive success.

In an attempt to acquire more information on the semiochemical relationships between predators, prey and host plants, a survey was carried out in the Czech Republic of Medetera, the spruce bark beetle I. typographus and its host tree species, the Norwegian spruce Picea abies Karst.

MATERIAL AND METHODS

Chemical components

To investigate the olfactory preferences of the Medetera species associated with I. typographus, their responses to the volatiles emitted by Norwegian spruce attacked by I. typographus and/or Pityogenes chalcographus L. were tested. Substances produced by resisting, dying or deteriorating trees, and by the bark beetles at each stage of tree infestation were also included, as these chemicals are known to be olfactory cues for previously studied antagonists of the Spruce bark beetle.

Substances released by Norwegian spruce (primary attractants):

- Unoxidized monoterpenes: the most common are α-pinene and limonene (Baier, 1999). They are part of the induced defense mechanisms of this tree (Paine et al., 1997), released predominantly at the beginning of an attack (Pettersson & Boland, 2003). I. typographus respond positively to the (–) isomer and negatively to the (+) isomer of α-pinene (Reddemann & Schopf, 1996). In our assay, we tested both isomers as well as the racemic blend.

- Oxidized monoterpenes: one of the most common is camphor (Pettersson & Boland, 2003), produced as byproduct during the biodegradation of tree tissues.

Substances produced or modified by spruce bark beetles (secondary attractants):

- Pheromone blend of I. typographus (Birgersson et al., 1984; Byers, 1989):

 - S-cis-verbenol: oxidized derivate of α-pinene. The key attractive compound of the aggregation pheromone of I. typographus, produced by males arriving on the suitable trees. It is attractive to both sexes.
 - 2-methyl-3-buten-2-ol: de novo product of I. typographus, with strong synergic effect on S-cis-verbenol. A mixture of 2-methyl-3-buten-2-ol and S-cis-verbenol forms the core of the aggregation pheromone of I. typographus and is referred to as the “pheromone” (or “kairomone”) in the following text.
 - Pheromone blend of P. chalcographus L., a bark beetle species sympatric and often competing with I. typographus (Byers et al., 1988):

 - Chalcogran (2-ethyl-1,6-dioxaspiro[4.4]nonane), a male produced pheromone
 - methyl-2,4-decadienoate, a male produced synergistic compound.

Field experiments

Fieldwork was carried out in the Šumava National Park and Protected Landscape Area in the Czech Republic, an area heavily affected by continuous outbreaks of bark beetles since the early 1990s. The experimental localities were distributed across an area of approximately 40 km². Sampling sites were selected at random in representative spruce habitats.

The different chemicals were tested in three experiments (Table 1). Each sampling site contained one complete set of baits of a particular experiment, arranged in the form of a multiple-choice design. Experiment I was replicated nine times, Experiment II ten times and Experiment III seven times, using a total of 133 traps at 26 sites. The traps, brown double-sided sticky boards 150 × 15 cm, were arranged in rows, the distance between the traps was 8 m, and their positions within a row randomised between sites. Each set of traps was exposed in the field for three weeks in June or July 2003, and was examined for specimens of Medetera at the end of this period. The traps were baited with dispensers consisting of a cellulose pad, impregnated with the chemical(s) and sealed within polyethylene foil. The evaporation rate of each chemical is comparable to that associated with injured or attacked Norwegian spruce (Ikeda et al., 1980; Kydonieus & Beroza, 1982; Charlwood et al., 1991; Borg-Karlson et al., 1996; Baier et al., 1999; Pettersson, 2001). The used evaporation rates were (mg/day): α-pinene – 100; limonene – 60; camphor – 5; 2-methyl-3-buten-2-ol – 100; S-cis-verbenol – 5. The commercial dispenser Chalcoprax (BASF) was used for the P. chalcographus pheromone bait. The rates were achieved by selecting an appropriate thickness of the foil (0.1 or 0.5 mm) and restricting the evaporation area by impermeable Al-PET foil. The duration of evaporation (4 weeks, one week longer than the exposure period) was determined by the volume of the chemical.

Statistical analysis

Individual trap catches were converted to the proportion of the total catch per group of traps to which the trap belonged, which decreased between-site variability and allowed for the integration of the data from sites with very different total catches (Table 3). These values were arcsin(square root(x)) transformed (Lepš, 1996). The null hypothesis that individuals were distributed randomly between traps regardless of the bait was tested using a Repeated measurements ANOVA. Catches of individual traps of each type were compared using a Tukey’s HSD post-hoc comparison. Synergistic interactions between selected trap types were detected using a Factorial Two Way ANOVA. The synergistic effect was defined as “a joint effect of two substances, greater than the sum of effects of the individual substances” (Pennak, 1964). Only when more than 30 speci-
mens of a Medetera species was collected in an experiment and at more than 3 sampling sites was the catch analyzed. All statistical analyses were performed using Statistica 5 package (StatSoft, 1995).

RESULTS

A total of 3,678 specimens of 9 Medetera species were collected (Table 2). The most abundant species was M. setiventris Thunberg, 1955 with 2,565 specimens. M. setiventris and M. melancholica Lundbeck, 1912 were the only species that were abundant enough for statistical analyses in all three experiments. In Experiment I, also M. adjaniae Gosseries, 1988, M. abstrusa Thunberg, 1955, M. infumata Loew, 1857 and M. pinicola Kowarz, 1877 were caught in sufficient numbers, but the catches of these species by the baited traps didn’t differ significantly from those of the control traps (Table 2). In Experiment III more than 30 specimens of each of M. abstrusa and M. nitida Macquart, 1834 were caught, but not analyzed as almost all of them were caught at a single site. M. dendrobaena Macquart, 1834 and M. signaticornis were always collected in low numbers or at fewer than 4 localities per experiment. Thus, the following analyses are only for M. setiventris and M. melancholica. M. adjaniae, M. melancholica and M. setiventris are newly recorded species for the Czech Republic (see Chvála, 1997).

Table 1. The baits used in experiments I, II and III, with an indication of the natural occurrence of the chemicals, their role in the olfactory perception of the bark beetles, and sources and purity of the chemicals.

<table>
<thead>
<tr>
<th>Bait</th>
<th>Occurrence</th>
<th>Source, purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-α-pinene</td>
<td>host tree monoterpene released following a bark beetle attack</td>
<td>Aldrich, Germany, >99%</td>
</tr>
<tr>
<td>(-)-α-pinene</td>
<td>host tree monoterpene released following a bark beetle attack</td>
<td>Aldrich, Germany, >99%</td>
</tr>
<tr>
<td>limonene</td>
<td>host tree monoterpene released following a bark beetle attack</td>
<td>Fluka, Germany, >95%</td>
</tr>
<tr>
<td>camphor</td>
<td>host tree oxidized monoterpene, emitted by dying trees</td>
<td>Aldrich, Germany</td>
</tr>
<tr>
<td>(S-cis-verbenol + 2-methyl-3-buten-2-ol) + limonene</td>
<td>I. typographus pheromone + unoxidized monoterpenes; simulates the beginning of an attack</td>
<td>SH Chem, Slovakia, >95%</td>
</tr>
<tr>
<td>(S-cis-verbenol + 2-methyl-3-buten-2-ol) + camphor</td>
<td>I. typographus pheromone + oxidised monoterpenes; simulates a well developed bark beetle colony</td>
<td>Sigma-Aldrich, USA, 98%</td>
</tr>
<tr>
<td>S-cis-verbenol + 2-methyl-3-buten-2-ol</td>
<td>control bait plus I. typographus pheromone</td>
<td></td>
</tr>
<tr>
<td>blank control bait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(components of the aggregation pheromone of I. typographus in combination). 10 replicates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-cis-verbenol + 2-methyl-3-buten-2-ol</td>
<td>pheromone of I. typographus</td>
<td>BASF, Germany</td>
</tr>
<tr>
<td>S-cis-verbenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-methyl-3-buten-2-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank control bait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(multispecific preferences – pheromones of I. typographus, P. chalcographus, and of both species combined). 7 replicates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-cis-verbenol + 2-methyl-3-buten-2-ol</td>
<td>pheromone of P. chalcographus; Chalcoprax used as commercial dispenser</td>
<td></td>
</tr>
<tr>
<td>chalcogran + methyl-2,4-decadienolate</td>
<td>pheromones of both species</td>
<td></td>
</tr>
<tr>
<td>(S-cis-verbenol + 2-methyl-3-buten-2-ol) + (chalcogran + methyl-2,4-decadienolate)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source, purity

Bait

Occurrence

Chemical

Production

Incident

Reference

SH Chem,
Slovakia, >95%
Sigma-Aldrich,
USA, 98%
BASF, Germany

657
mone plus camphor bait (Table 3) was due to a single exceptional catch at one site. Except for limonene in the case of *M. setiventris*, no monoterpene was significantly attractive.

In Experiment II, only the kairomone of *I. typographus* (blend of S-cis-verbenol and 2-methyl-3-buten-2-ol) was significantly more attractive for *M. setiventris* than the control (Table 3, Fig. 2). S-cis-verbenol on its own was also more attractive than the control (see Fig. 2), but not statistically so. Factorial ANOVA did not reveal any synergistic interaction between S-cis-verbenol and 2-methyl-3-buten-2-ol (*F* = 0.377; *p* = 0.543; df of groups = 1; df total = 32). The preference for the complete blend showed by *M. melancholica* was not statistically significant.

In experiment III, only *M. setiventris* showed any significant preferences. *M. setiventris* was most attracted to the pheromone of both prey species, less to the kairomone of *I. typographus*, and even less to the pheromone of *P. chalcographus* (Fig. 3). The majority of the specimens of *M. melancholica* were caught by the trap baited with the pheromone of *I. typographus*, while the other two baits containing the pheromone of *P. chalcographus* were less successful. These results are not statistically significant.

DISCUSSION

The traps caught mainly the rarely studied *M. setiventris*. Only Nuorteva (1956) records this species, mainly on spruce (*Picea excelsa*). He reared adults from pupae collected in galleries of *Hylurgops palliatus* and *Pityogenes chalcographus* (Coleoptera: Scolytidae) and collected adult flies on trunks of spruce containing galleries of the scolytids *Hylurgops palliatus*, *Pityogenes chalcographus*, *Ips typographus* and *Polygraphus* sp. *M. setiventris* was also collected on a pine tree infested by *Ips amitinus*. The most frequently reported Medetera predator of *I. typographus* in Europe, *M. signaticornis* (Ounap, 2001; Wermelinger, 2002), occurred much less frequently in our survey. Despite its abundance in our experiment and the fact that *M. setiventris* is a common predator of *I. typographus* in the study area (Hulcr & Zelený, unpubl. data), it may not be the most abundant, as different species are known to respond differently to pheromone trap-

Experiment I

The results for M. setiventris indicate that this species prefers trees freshly attacked by bark beetles, which produce mainly unoxidized monoterpenes. The species is probably attracted even to later stages of infestation, since the volatile associated with these stages, camphor, has no effect on the attractiveness of the kairomone.

M. melancholica was also attracted mostly to unoxidized monoterpenes and kairomone, volatiles signalling early stages of tree attack. But, unlike M. setiventris, it seems to be repelled by the presence of camphor (indicat-
of bark beetles (Ounap, 2001). Surprisingly, Ounap (1999) observed first bark beetles, but are killed by the final instar larvae of *I. typographus* (Pettersson, 2001), whose hosts are the late larval instars. Oxidized monoterpenes – is found in hymenopteran parasitoids (Pettersson, 2001), whose hosts are the late larval instars.

M. setiventris and *M. melancholica* were only slightly attracted by individual monoterpenes or not at all, which might be related to the fact that in natural conditions, this signal possibly only indicates a tree injury not necessarily caused by bark beetle infestation. Furthermore, the monoterpenes are commonly produced by any coniferous trees. In terms of the “reliability-detectability” gradient (Feener & Brown, 1997), such a signal is at the “unreliable” end of the gradient. On the other hand, Lawson et al. (1997) mention that *M. signaticornis* arrive on injured trees even before they are colonized by bark beetles.

According to Williamson (1971), Nearctic *M. bistriata* are attracted to a mixture of kairomone and synomones, but do not respond significantly to the kairomone or synomone components on their own. The most attractive bait for this species was a naturally infested log. Our results and those of Williamson (1971) indicate that natural sets of chemical cues, rather than individual substances, are the most attractive for *Medetera*.

Although *M. adiastae* is a predator of the bark beetles in question, and *M. abstrusa* and *M. infumata* were observed to arrive on bark beetle infested trees (Ounap, 1999), they showed no preference for any of the tested chemicals. Therefore, these species either use a different means of locating their prey, or the numbers of specimens caught in this study were too few to determine any pattern in their preferences.

Experiment II

Of the two compounds in the *I. typographus* pheromone, only (S)-cis-verbenol is clearly attractive to *M. setiventris*. The same is the case for other predators of *I. typographus* of the genus *Thanasimus* (Hansen, 1983). *M. melancholica* was most attracted by the complete pheromone, but contrary to *M. setiventris*, S-cis-verbenol failed to attract more individuals than the control bait. The presence of both compounds appears to be necessary to elicit a response.

Experiment III

P. chalcographus and *I. typographus* regularly colonize the same tree. Their galleries often overlap, which allows subcortical predators to exploit both species. However, larvae of *P. chalcographus* are much smaller and a poorer food resource for predators and often colonize parts of the tree (tree top, branches) with an inferior phloem quality than does *I. typographus*. This seems to be reflected in the olfactory responses of *M. setiventris*, which shows a preference for traps baited with attractants of both prey species, and for traps with the *I. typographus* pheromone if the two pheromones are offered separately. The behavior of *M. melancholica* seems to be different, as the majority of individuals chose traps baited with pure pheromone of *I. typographus* over traps baited with the pheromones of both prey species, indicating a strong preference for *I. typographus*. Again, mixtures of chemicals apparently inform the species about the suitability of the habitat for oviposition.

ACKNOWLEDGEMENTS. We are grateful to V. Novotný and J. Lešp (Institute of Entomology, Czech Academy of Sciences and Faculty of Biological Sciences, University of South Bohemia, Czech Republic) for their advice. Many thanks are also due to J. Olejníček (Institute of Parasitology, Czech Academy of Sciences, Czech Republic) for his assistance with the identification of *Medetera*, and to the personnel of the Sumava National Park and the Forests of the Czech Republic, Forest District Bou- bin, for their assistance in the field. The work was financially supported by grant from the Sophia Foundation, the Grant Agency of the Czech Republic (GAČR 206/03/H034, 206/04/0725), Czech Academy of Sciences (GAAV K6005114) and the Czech Ministry of Education (Kontakt ME646, MSM 6007665801).

REFERENCES

BAER P., BAER D. & ROSSER S. 1999: Monoterpene content and monoterpene emission of Norway spruce (Picea abies L.) bark...

Lépš J. 1996: Biostatistika. Faculty of Biological Sciences, University of South Bohemia, České Budějovice, 160 pp. [in Czech].

TOMMERAS B.A. 1988: The clerid beetle, Thanasis formicarius, is attracted to the pheromone of the ambrosia beetle, Trypodendron lineatum. *Experientia* 44: 536–537.

Received March 4, 2005; revised and accepted August 22, 2005