The ant-associations and diet of the ladybird *Coccinella magnifica* (Coleoptera: Coccinellidae)

John J. Sloggett1,2, **Wolfgang Völk**3, **Werner Schulze**2, **J. Hinrich G.v.d. Schuleenburg**1,4 and **Michael E. N. Majerus**1

1Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK

2Lehrstuhl für Tierökologie I, Universität Bayreuth, PO Box 101251, D-95440 Bayreuth, Germany (current address for JJS)

3Samlandweg 15a, D-33719 Bielefeld, Germany

4Current address: Abteilung für Evolutionsbiologie, Institut für Evolution und Ökologie der Tiere, Westfälische-Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany

Key words. *Coccinella magnifica*, myrmecophily, *Formica rufa* group, habitat preference, aphidophagy, geographic variation, *Coccinella septempunctata*

Abstract. The ladybird *Coccinella magnifica* is typically considered to be myrmecophilous, and primarily associated with the *Formica rufa* group of wood ants. It is regularly associated with ants of the *F. rufa* group in north-western Europe. The very limited data on the habitat preference of *C. magnifica* in the southern and eastern parts of its range indicate that its ant-associations change and that it may even be non-myrmecophilous in this region. *C. magnifica* might consist of geographically restricted species or semi-species, on the basis of its geographical variation in ant-association. Laboratory and field observations on north-western myrmecophilous populations *C. magnifica* appear to indicate it is a generalist predator of aphids. *Coccinella magnifica*’s potential dietary breadth is similar to that of its congener *Coccinella septempunctata*, which has been used as a model of *C. magnifica*’s non-myrmecophilous ancestor in evolutionary studies.

INTRODUCTION

The Palearctic ladybird *Coccinella magnifica* Redtenbacher (= *C. distincta* Faldermann, *C. divaricata* Olivier, *C. labilis* Mulsant, *C. lama* Kapur) is considered myrmecophilous, occurring with the red wood ants, *Formica rufa* group (e.g. Donisthorpe, 1896, 1919–20; Wisniewski, 1963; Majerus, 1989; Sloggett, 1998). The ladybird has been tacitly regarded as a generalist aphidophagist, consuming a variety of aphids on different plants, most notably ant-tended species, within its habitat (e.g. Majerus, 1989, 1991, 1994; Sloggett & Majerus, 2000a). In this paper we reconsider the assumptions that have been made about *C. magnifica*’s ant-associations and dietary preferences, using published sources known to us and new observations we have made, as well as previously unpublished observations provided by Dr. John Muggleton (see acknowledgements).

COCCINELLA MAGNIFICA ANT-ASSOCIATIONS

Coccinella magnifica association with the *Formica rufa* group of ants

C. magnifica is typically associated with ants of the *F. rufa* group, throughout north-western Europe and into central Europe. Donisthorpe (1896) first recognised it as a regular associate of *Formica rufa*, and it has since been recorded associated with *Formica polyctena*, *Formica lugubris* and *Formica pratensis* (Table 1).

Most work on *C. magnifica*’s association with the *Formica rufa* group has been carried out in southern England, with *F. rufa*. Mating adults, eggs, larvae and pupae of *C. magnifica* are all found associated with this ant (Donisthorpe, 1919–20; JJS). Majerus (1989) suspected confusion with the generalist *Coccinella septempunctata* L., which *C. magnifica* resembles, and checked the identities of 5971 seven-spotted ladybirds without consideration for the presence or absence of *F. rufa*. *Coccinella magnifica* was only found when *F. rufa* was present, thus the association with *F. rufa* is real. Numbers of *C. magnifica* also declined with distance from *F. rufa* nests (Majerus, 1989), and the ladybird is consistently associated with *F. rufa* throughout the year (Sloggett & Majerus, 2000a).

Published work supports the view that *C. magnifica* adults and larvae are less vigorously attacked by *F. rufa* than are other ladybirds, notably *C. septempunctata* (Donisthorpe, 1919–1920; Majerus, 1989; Sloggett et al., 1998). The adults also use physical defence on colonies of *F. rufa*-tended aphids, where the probability of ant attack is much greater (Sloggett et al., 1998). For similar reasons, *C. magnifica* larvae minimise the time spent on colonies of *F. rufa*-tended aphids and may also utilise limited chemical defence (J. J. Sloggett, unpub. data).

Associations of *C. magnifica* with non-*F. rufa* group *Formica* ants

Ponta (1959) recorded in England a *C. magnifica* larva associated with the slave-making ant *Formica sanguinea* Latreille, which is closely related to the *F. rufa* group, and shares many aspects of its biology with *F. rufa* group ants (Skinner, 1998). *Coccinella magnifica* has also been recorded with *Formica cinerea* Mayr in eastern Germany, at Königs Wusterhausen, near Berlin, although *F. rufa* was also present at this site (Schulze, 1919). In Luxembourg, Wasmann (1912) recorded *C. magnifica* with *Formica rufibarbis* F. enslaved by the ant *Polyergus rufescens* (Latreille).

Although many observations have been made on English aphid-tending *F. fusca* by one of us (JJS), only a single *C. mag-
Coccinella magnifica adult has been found with the ant Formica fusca in England, at Esher Common, Surrey, where F. rufa group ants occur in the immediate vicinity. However, in Central Europe adult C. magnifica and F. fusca have been recorded together in the absence of F. rufa group ants at two distant localities: near Tanowo in north west Poland (previously Falkenwald, Germany), at two sites (Schmidt, 1936), and at Seybothenreuth, near Bayreuth in south-eastern Germany, where single adults were found with F. fusca mixed with Lasius niger (L.) in both 1996 and 1997 (WV).

Formica rufa group and F. fusca pheromone trails possess a common component, mellein (Bestmann et al., 1992; Kern & Bestmann, 1994). If, like many other myrmecophiles, C. magnifica uses ant pheromone trails (see Bhatkar, 1982 on Coccinella septempunctata), then C. magnifica might accidentally become associated with F. fusca due to the shared chemical component of the two ants' trails. This seems a probable explanation for the English record particularly, since F. rufa group ants occurred very nearby. However, no F. rufa group ants were in the immediate vicinity of two of three sites given by Schmidt (1936), although they were present at a third site. Similarly, both observations at Seybothenreuth were on the same colony of F. fusca, some 400 metres distant from the nearest F. rufa group colonies. It thus appears that C. magnifica may more regularly associate with F. fusca, and perhaps with other non-F. rufa group Formica ants, in central Europe, and perhaps further east.

Coccinella magnifica associations with non-Formica ants

Wasmann (1912) records C. magnifica in Luxembourg associated with several non-Formica species of ants, namely Camponotus ligniperda Latreille and Myrmica rubra (L.) (= M. laevinodis Nylander) as well as Polyergus rufescens and its Formica rufibarbis slaves. Adult and larval C. magnifica were also observed in England associated with aphid-tending Myrmica ruginodis Nylander, at Oxshott Heath, Surrey (JJS). However, these ladybirds were within a F. rufa territory, and F. rufa workers were also tending aphids on the same plant. A similar situation probably formed the basis for Wasmann’s uncorroborated observations, since he also records C. magnifica associated with F. rufa group ants.

Thus, there is little convincing evidence that C. magnifica is ever associated with non-Formica ants, except by accident. Coccinella magnifica’s chemical counter to ant-aggression probably involves chemical repellence rather than chemical mimicry (Sloggett, 1998; Sloggett, unpub. data), and C. magnifica defence behaviour is, like its probable chemical adaptation, effective against most ant species (Arnold and others in Majerus, 1994, p.151; Sloggett et al., 1998). Coccinella magnifica may thus be potentially able to coexist with a wide variety of ant species, both typical and accidental associates, without suffering high ant aggression.

Coccinella magnifica recorded without clear ant associations

Majerus (1989) notes that of over 1400 C. magnifica collected by him in south-eastern England, only one, netted in flight and probably dispersing, was found in the absence of ants. In southern France, at Entrechaux, near Vaison-la-Romaine, Vaucluse, two adult C. magnifica were recorded without obvious ant association. No Formica or other large ants were found nearby (J. Muggleton, pers. comm.). Although dispersal could be invoked to explain this record and C. magnifica have been recorded with Formica ants further west (J. Muggleton, pers. comm.), the occurrence of two individuals together make the C. magnifica at Entrechaux less likely to be accidental vagrants.

Published sources on C. magnifica from extreme eastern Europe and Asia exhibit some similarities to the French record. For example, Dyadechko (1954) records the occurrence of C. magnifica adults and larvae in Ukrainian cereal fields, where F. rufa group ants are unlikely to occur, although other ants would be present. Furthermore, one of us (MENM) collected numbers of C. magnifica from two sites near Lake Baikal in the Buratian Republic (Russia) in early September 1999: at one site, between Ulan Ude and Kyahma, C. magnifica were found with an unidentified non-F. rufa group ant; at the other, at Ulan Ude, no obvious ant associates were recorded.

In view of these observations, and those made of C. magnifica with F. fusca considered above, it seems possible that in southern and eastern parts of its range C. magnifica is non-myrmecophilous, or facultatively associated with a wider range of ant species, rather like C. septempunctata in England (Sloggett & Majerus, 2000a). A similar geographic phenomenon is documented for Coccinella quinquepunctata L., which is specialised in river and lake shingle habitats in north-western Europe, but is a broader habitat generalist in the south and east of its range (Hodek, 1973, 1996; Majerus & Fowles, 1989; Sloggett & Majerus, 2000b). Geographic variability in habitat preference could be correlated with underlying genetic divergence between populations (Sloggett & Majerus, 2000b). Further work is clearly needed to elucidate the exact associations of southern and eastern populations of C. magnifica, as well as their relationship to north-west European populations.

THE DIET OF NORTH WESTERN MYRMECOPHILOUS C. MAGNIFICA

Hodek (1973, 1996) points out that mere observation of association with or feeding on particular prey does not necessarily indicate that such prey constitutes a suitable diet. He argues that the essential prey of a ladybird species is that on which larval development, with low mortality, and high oviposition is obtained. However, not all diets fulfilling these criteria for particular ladybird species in the laboratory are encountered by these species in the field (Majerus, 1994; Hodek, 1996; Kal-
Larvae and adults observed feeding on this aphid, which may be ant-tended. Pupae were also present.

A single larva observed feeding on this aphid tended by Formica rufa (see Pontin, Wyre Forest, England adults have been observed naturally feeding on ant-tended colonies.

Table 2. Aphids with which C. magnifica has been recorded feeding on or associated with in the field.

<table>
<thead>
<tr>
<th>Aphid species [Host plant]</th>
<th>Locality</th>
<th>Comments</th>
<th>Observer or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoecta sp. [Cornus sanguinea L., dogwood]</td>
<td>Seybothenreuth, nr. Bayreuth, Germany</td>
<td>Two C. magnifica adults have been found associated with this aphid tended by Formica fusca in separate seasons (see section on non-F. rufa group Formica ant associates).</td>
<td>WV</td>
</tr>
<tr>
<td>Aphids salicaeae Schrank [Senecio jacobaea L., ragwort]</td>
<td>East Dorset, England</td>
<td>Larvae and adults observed feeding on this aphid, which may be ant-tended. Pupae were also present.</td>
<td>MENM (see Majerus, 1989)</td>
</tr>
<tr>
<td>Aphids sarothamni Transsen [Cytisus scoparius (L.), broom]</td>
<td>Wyre Forest, Worcestershire, England</td>
<td>A single larva observed feeding on this aphid tended by Formica sanguinea (see section on non-F. rufa group Formica ant associates).</td>
<td>Pontin, 1959</td>
</tr>
<tr>
<td>Aphids ulcis Walker [Ulex europaeus L., gorse]</td>
<td>Oxshott Heath, Surrey England</td>
<td>Both adult and larval C. magnifica have been found associated with this aphid, sporadically tended by F. rufa and Myrmica ruginodis (see section on non-Formica ant associates of C. magnifica).</td>
<td>JJS</td>
</tr>
<tr>
<td>Aphids confinis (Koch) (= Todolachnus sp.) [Abies alba Miller, silver fir]</td>
<td>Nr. Grafenau, Bavaria, Germany</td>
<td>A single C. magnifica adult has been observed with this occasionally tended aphid, and F. rufa.</td>
<td>WV</td>
</tr>
<tr>
<td>Cinara piceicola (Hartig) [Picea sp., spruce]</td>
<td>Esher Common, Surrey, England</td>
<td>Large numbers of C. magnifica larvae, and adults, were observed at Esher Common in 1998 associated with this aphid tended by F. rufa. Predation by an adult has been observed. Elatobium abietum was also present (see below). At Bad Berneck, C. magnifica adults have been observed associated with this aphid by Formica polycetina, along with Cinara plicicornis (see next entry).</td>
<td>JJS, WV</td>
</tr>
<tr>
<td>Cinara pilicornis (Hartig) [P. abies, Norway spruce]</td>
<td>Bad Berneck, nr. Bayreuth, Germany</td>
<td>Four adult C. magnifica have been observed associated with this aphid, tended by Formica polycetina, in visits in two successive seasons. Cinara piceicola was also present (see previous entry).</td>
<td>WV</td>
</tr>
<tr>
<td>Cinara pilosa (Zetterstedt) (= C. picea (Mordwilko) of many British authors) [Pinus sylvestris L., Scots pine]</td>
<td>Esher Common and Oxshott Heath, Surrey, England</td>
<td>Adults and larvae of C. magnifica have been observed naturally feeding on untended individuals of this sporadically tended species, both on trees and on F. rufa foraging trails on the ground, where numbers of these aphids can often be found having fallen from vegetation.</td>
<td>JJS</td>
</tr>
<tr>
<td>Cinara pini (L.) [P. sylvestris]</td>
<td>Esher Common and Oxshott Heath, Surrey, England</td>
<td>C. magnifica adults have been frequently found associated with this aphid, tended by F. rufa in England. An adult has also been found associated with this aphid tended by F. polycetina in Germany. In England adults have been observed naturally feeding on ant-tended colonies.</td>
<td>JJS, WV</td>
</tr>
<tr>
<td>Elatobium abietum (Walker) [Picea sp.]</td>
<td>Esher Common, Surrey, England</td>
<td>In addition to observations of this aphid occurring with C. magnifica on Picea sp., alongside C. piceicola (see above), adult C. magnifica have been found associated with this non-tended aphid alone early in the year. On this occasion, F. rufa were present feeding on the honeydew excreted by the aphid onto the plant surface.</td>
<td>JJS</td>
</tr>
<tr>
<td>Schizolachnus pineti (F.) [P. sylvestris]</td>
<td>Esher Common, Surrey, England</td>
<td>This non-tended aphid is often present along with Cinara spp. on P. sylvestris and it is thus often difficult to ascertain whether this aphid is also being predated. However a number of adult C. magnifica were observed associated with this aphid in the absence of Cinara spp. early in the season in 1996. Formica rufa were also present, feeding on the honeydew produced by the aphid on the surface of the needles.</td>
<td>JJS</td>
</tr>
<tr>
<td>Sitisbon fragarius (Walker) [Holcus lanatus L.]</td>
<td>Oxshott Heath, Surrey, England</td>
<td>Six C. magnifica larvae were found on one occasion associated with this non-tended aphid.</td>
<td>JJS</td>
</tr>
<tr>
<td>Symphydous oblongus (von Heyden) [Betula pendula Roth, birch]</td>
<td>Esher Common and Oxshott Heath, Surrey, England</td>
<td>C. magnifica adults have been observed feeding on this aphid under attack from attendant F. rufa on several occasions in the summer.</td>
<td>JJS</td>
</tr>
</tbody>
</table>
Aphis ulicis records that with inadequate food, and under similar conditions sambuci year that some colonies are only sporadically tended (Wellenbergs, particularly earlier in the season. Additionally, certain ant-peon species, although restricted to conifers. There is also a bias in the list towards ant-tended species, although to be similar to that of its generalist congener A. magnifica has been fed in the laboratory, its potential dietary breadth appears required when interpreting both field and laboratory observations (Hodek, 1996).

Field observations

Observations on the natural diet of C. magnifica (Table 2) exclusively concern north-west European populations associated with Formica ants: most were made in southern England and near Bayreuth, in Germany. Although, in many cases, adults alone have been observed associated with or feeding on particular aphid species, in seven cases larvae are recorded. Hodek’s criteria for essential prey are likely to be fulfilled by these aphid species, at least. The list as a whole, and particularly the occurrence of a number of larval records, suggests that C. magnifica is indeed a dietary generalist.

The high number of conifer-dwelling aphids on our list clearly reflects the common occurrence of conifers in habitats where F. rufa group ants often live: C. magnifica itself is not restricted to conifers. There is also a bias in the list towards ant-tended species, although C. magnifica readily feeds on untended colonies of tended species or non-tended aphids when they are available. Adults and larvae have been observed feeding on unidentified non-tended aphids on herbaceous plants in England (JJS). Coccinella magnifica also feed on F. rufa foraging trails, on Cinara pilosa that have fallen from pine trees (JJS). These aphids are ignored by F. rufa workers; the ants also rarely attack C. magnifica on foraging trails, in contrast to their defence of tended aphid colonies against the ladybird (Sloggett et al., 1998; J.J. Sloggett, unpub. data).

Availability of non-tended species may be limited, since F. rufa group ants often predate such aphids (Skinner, 1980). However, some non-tended species may occur in appreciable numbers, particularly earlier in the season. Additionally, certain ant-tended species may be present at such high levels earlier in the year that some colonies are only sporadically tended (Wellenstein, 1952; Way, 1963; Sloggett & Majerus, 2000a). Un- or non-tended aphids are undoubtedly less costly to obtain, perhaps even making them preferred prey. For example, C. magnifica larvae were observed associated with the non-tended S. fragariae, although, at this time, no larvae were found with tended Aphis ulicis nearby.

Laboratory observations

One of us (JJS) has successfully reared C. magnifica, adult to adult, on Acyrthosiphon pisum (Harris) (see also Majerus, 1989), Aphis fabae fabae Scopoli and Microlophium carnosum Buckton. Adult C. magnifica have additionally been maintained on Aphis fabae cirsiiacanthoidis and Aphis urticae Gmelin, with no apparent ill effects (JJS). Very high mortality has been observed in C. magnifica larvae if they are fed Aphis sambuci L. or Macrosiphum albifrons Essig (JJS). Coccinella magnifica larvae will readily resort to cannibalism if provided with inadequate food, and under similar conditions C. magnifica adults will eat conspecific eggs (JJS). Kanervo (1940, 1946) records that C. magnifica will eat the immature stages of some chrysomelid beetles, although this seems an improbable natural diet for C. magnifica.

The laboratory observations on C. magnifica diet, in conjunction with field data, argue very strongly for north-west European C. magnifica being dietary generalists. Although naturally C. magnifica rarely encounters some of the aphids that it has been fed in the laboratory, its potential dietary breadth appears to be similar to that of its generalist congener Coccinella septempunctata. Like C. magnifica, C. septempunctata flourishes on Acyrthosiphon pisum, Aphis fabae, and Microlophium carnosum, and suffers high mortality when fed Aphis sambuci and Macrosiphum albifrons (Hodek, 1956, 1957; Blackman, 1965, 1967; Gruppe & Roemer, 1988; Emrich, 1991). These similarities may arise through common descent, and other Coccinella species probably also possess these dietary traits. Coccinella septempunctata has been used as a phylogenetically close model for the ancestors of C. magnifica before myrmecophily evolved, in a number of comparative studies (Sloggett, 1998; Sloggett et al. 1998; Sloggett & Majerus, 2000). The shared effects of particular types of aphid food reinforce the suitability of C. septempunctata for comparison with myrmecophilous C. magnifica, in research on the latter and its origins.

ACKNOWLEDGEMENTS. We are particularly grateful to John Muggleton for very generously making his own observations on C. magnifica available to us, and for his comments on an earlier draft of the manuscript. We also wish to thank Andy Davies, Marzio Fattorini and Blandine Massonnet for their comments on the manuscript. John Sloggett additionally thanks Clive Carter, Tony Dixon, Markus Wagner and Jens Gutsell for assistance in the various fields of aphid plant and old locality identification. He also wishes to thank the BBSRC for their funding of a Ph.D. studentship from 1994 to 1997, during the course of which many of his own observations were made.

REFERENCES

568