Eur. J. Entomol. 115: 249-255, 2018 | DOI: 10.14411/eje.2018.024

Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae)Original article

György CSÓKA1, Anikó HIRKA1, Levente SZŐCS1, Norbert MÓRICZ2, Ervin RASZTOVITS2, Zoltán PÖDÖR3
1 NARIC Forest Research Institute, Department of Forest Protection, Hegyalja str. 18., 3232 Mátrafüred, Hungary; e-mails: csokagy@erti.hu, hirkaa@erti.hu, szocsl@erti.hu
2 NARIC Forest Research Institute, Department of Ecology and Silviculture, Paprét 17., 9400 Sopron, Hungary; e-mails: moriczn@erti.hu, rasztovitse@erti.hu
3 Institute of Informatics and Economics, Simonyi Károly Faculty of Engineering Wood Sciences and Applied Arts, University of Sopron, Bajcsy-Zsilinszky str. 9., 9400 Sopron, Hungary; e-mail: podor@inf.uni-sopron.hu

Population fluctuations of the well-known oak defoliator, the oak processionary moth (Thaumetopoea processionea L.), were studied using light trap data and basic meteorological parameters (monthly average temperatures, and precipitation) at three locations in Western Hungary over a period of 15 years (1988-2012). The fluctuations in the numbers caught by the three traps were strongly synchronized. One possible explanation for this synchrony may be similar weather at the three trapping locations. Cyclic Reverse Moving Interval Techniques (CReMIT) were used to define the period of time in a year that most strongly influences the catches. For this period, we defined a species specific aridity index for Thaumetopoea processionea (THAU-index). This index explains 54.8-68.9% of the variation in the yearly catches, which indicates that aridity, particularly in the May-July period was the major determinant of population fluctuations. Our results predict an increasing future risk of Oak Processionary Moth (OPM) outbreaks and further spread if the frequency of severe spring/summer droughts increases with global warming.

Keywords: Lepidoptera, Notodontidae, Thaumetopoea processionea, light trap, data mining, population fluctuation, Moran-effect, drought, oak defoliator, CReMIT-analysis

Received: September 26, 2017; Revised: May 9, 2018; Accepted: May 9, 2018; Published online: June 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
CSÓKA, G., HIRKA, A., SZŐCS, L., MÓRICZ, N., RASZTOVITS, E., & PÖDÖR, Z. (2018). Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae). EJE115, Article 249-255. https://doi.org/10.14411/eje.2018.024
Download citation

References

  1. Allstadt A.J., Liebhold A.M., Johnson D.M., Davis R.E. & Haynes K.J. 2015: Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics. - Ecology 96: 2935-2946. Go to original source...
  2. Ayres M.P. & Lombardero M.J. 2000: Assessing the consequences of global change for forest disturbance from herbivores and pathogens. - Sci. Total Environ. 262: 263-286. Go to original source...
  3. Baker R., Caffier D., Choiseul J.W., Clercq P. de, Gerowitt B., Karadjova O.E., Lövei G., Oude A., Makowski D., Manceau C., Manici L., Perdikis D., Porta A., Schans J., Schrader G., Steffek R., Strömberg A., Tiilikkala K., Lenteren C. van & Vloutoglou I. 2009: Evaluation of a pest risk analysis on Thaumetopoea processionea L., the oak processionary moth, prepared by the UK and extension of its scope to the EU territory. - EFSA J. 1195: 1-64.
  4. Battisti A. 2008: Forests and climate change - lessons from insects. - iForest - Biogeosci. Forestry 1: 1-5. Go to original source...
  5. Battisti A. & Larsson S. 2015: Climate change and insect pest distribution range. In Björkman C. & Niemelä P. (eds): Climate Change and Insect Pests. CABI, Wallingford, pp. 1-15. Go to original source...
  6. Battisti A., Larsson S. & Roques A. 2017: Processionary moths and associated urtication risk: global change-driven effects. - Annu. Rev. Entomol. 62: 323-342. Go to original source...
  7. Blaik T., Malkiewicz A. & Wasala R. 2011: Rediscovery and remarks on occurrence of Thaumetopoea processionea (Linnaeus, 1758) (Lepidoptera: Notodontidae: Thaumetopoeinae) in Poland. - Wiadom. Entomol. 30: 246-256.
  8. Bonsignore C.P. & Manti F. 2013: Influence of habitat and climate on the capture of male pine processionary moths. - Bull. Insectol. 66: 27-34.
  9. Borovics A. & Mátyás Cs. 2013: Decline of genetic diversity of sessile oak at the retracting (xeric) limits. - Ann. For. Sci. 70: 835-844. Go to original source...
  10. Chevalier M., Laffaille P., Ferdy J.B. & Grenouillet G. 2015: Measurements of spatial population synchrony: influence of time series transformations. - Oecologia 179: 15-28. Go to original source...
  11. Csóka Gy. 1997: Increased insect damage in Hungarian forests under drought impact. - Biologia 52: 159-162.
  12. Dobbertin M., Wermelinger B., Bigler C., Bürgi M., Carron M., Forster B., Gimmi U. & Rigling A. 2007: Linking increasing drought stress to scots pine mortality and bark beetle infestations. - Sci. World J. 7: 231-239. Go to original source...
  13. Dingman S.L., Seely-Reynolds D.M. & Reynolds R.C. 1988: Application of kriging to estimating mean annual precipitation in a region of orographic influence. - J. Am. Water Resour. Assoc. 24: 329-339. Go to original source...
  14. Garen D.C., Johnson G.L. & Hanson C.L. 1994: Mean areal precipitation for daily hydrologic modeling in mountainous regions. - J. Am. Water Resour. Assoc. 30: 481-491. Go to original source...
  15. Gottschling S. & Meyer S. 2006: An epidemic airborne disease caused by the oak processionary caterpillar. - Pediat. Dermatol. 23: 64-66. Go to original source...
  16. Green P. 2015: Oak processionary moth (Thaumetopoea processionea) in deer parks. - Veter. Record 177: 208-208. Go to original source...
  17. Groenen F. 2010: Variation of Thaumetopoea processionea (Notodontidae: Thaumetopoeinae) in Europe and the Middle East. - Entomol. Ber. 70: 77-82.
  18. Groenen F. & Meurisse N. 2012: Historical distribution of the oak processionary moth Thaumetopoea processionea in Europe suggests recolonization instead of expansion. - Agr. For. Entomol. 14: 147-155. Go to original source...
  19. Hevesi J.A., Flint A.L. & Istok J.D. 1992: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. - J. Appl. Meteorol. 31: 677-688. Go to original source...
  20. Hirka A., Szabóky Cs., Szőcs L. & Csóka Gy. 2011: 50 years of the forestry light trap network. - Növényvédelem 47: 474-479 [in Hungarian].
  21. Hlásny T., Mátyás Cs., Seidl R., Kulla L., Merganičová K., Trombik J., Dobor L., Barcza Z. & Konôpka B. 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? - For. J. 60: 5-18. Go to original source...
  22. Hlásny T., Trombik J., Holuša J., Lukášová K., Grendár M., Turčáni M., Zúbrik M., Tabaković-Tošić M., Hirka A., Buksha I., Modlinger R., Kacprzyk M. & Csóka Gy. 2015: Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. - J. Pest Sci. 89: 413-425. Go to original source...
  23. Hoch G., Toffolo E.P., Netherer S., Battisti A. & Schopf A. 2009: Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. - Agr. For. Entomol. 11: 313-320. Go to original source...
  24. Hudson P.J., Dobson A.P. & Lafferty K.D. 2006: Is a healthy ecosystem one that is rich in parasites? - Trends Ecol. Evol. 21: 381-385. Go to original source...
  25. Jactel H., Petit J., Desprez-Loustau M.L., Delzon S., Piou D., Battisti A. & Koricheva J. 2012: Drought effects on damage by forest insects and pathogens: A meta-analysis. - Glob. Change Biol. 18: 267-276. Go to original source...
  26. Jeffs C.T. & Lewis O.T. 2013: Effects of climate warming on host-parasitoid interactions. - Ecol. Entomol. 38: 209-218. Go to original source...
  27. Jepsen J.U., Hagen S.B., Ims R.A. & Yoccoz N.G. 2008: Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. - J. Anim. Ecol. 77: 257-264. Go to original source...
  28. Jönsson A.M., Appelberg G., Harding S. & Bärring L. 2009: Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. - Glob. Change Biol. 15: 486-499. Go to original source...
  29. Kalinkat G. & Rall B.C. 2015: Effects of climate change on the interactions between insect pests and their natural enemies. In Björkman C. & Niemala P. (eds): Climate Change and Insect pests. CABI, Wallingford, pp. 74-91. Go to original source...
  30. Klapwijk M.J., Csóka Gy., Hirka A. & Björkman C. 2013: Forest insects and climate change: Long-term trends in herbivore damage. - Ecol. Evol. 3: 4183-4196. Go to original source...
  31. Lakatos F. & Molnár M. 2009: Mass mortality of beech (Fagus sylvatica L.) in South-West Hungary. - Acta Silvat. Lignar. Hungar. 5: 75-82.
  32. Leskó K., Szentkirályi F. & Kádár F. 1994: Fluctuation patterns of the gypsy moth (Lymantria dispar L.) population between 1963-1990 in Hungary. - Erdész. Kutat. 84: 163-176 [in Hungarian].
  33. Leskó K., Szentkirályi F. & Kádár F. 1995: Long term fluctuation pattern of the brown-tale moth (Euproctis chrysorrhoea L.) Hungarian population. - Erdész. Kutat. 85: 169-185 [in Hungarian].
  34. Leskó K., Szentkirályi F. & Kádár F. 1997: Long term (1962-1996) fluctuation of the lackey moth population in Hungary. - Erdész. Kutat. 86-87: 207-220 [in Hungarian].
  35. Leskó K., Szentkirályi F. & Kádár F. 1998: An analysis of fluctuation pattern of geometrid moths based on long term (1961-1997) light trap and damage data time series in Hungary. - Erdés. Kutat. 88: 319-333 [in Hungarian].
  36. Leskó K., Szentkirályi F. & Kádár F. 1999: Characterisation of the long term (1962-1997) fluctuation of winter moth (Operophtera brumata L.) population based on forestry light trap data. - Erdész. Kutat. 89: 169-182.
  37. Li S., Daudin J.J., Piou D., Robinet C. & Jactel H. 2015: Periodicity and synchrony of pine processionary moth outbreaks in France. - For. Ecol. Manag. 354: 309-317. Go to original source...
  38. Liebhold A., Koenig W.D. & Bjørnstad O.N. 2004: Spatial synchrony in population dynamics. - Annu. Rev. Ecol. Evol. Syst. 35: 467-490. Go to original source...
  39. Liebhold A.M., Johnson D.M. & Bjørnstad O.N. 2006: Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity. - Popul. Ecol. 48: 131-138. Go to original source...
  40. Lövgren R. & Dalsved B. 2005: Thaumetopoea processionea L. (Lepidoptera: Thaumetopoeidae) found in Sweden. - Entomol. Tidskr. 126: 93-94.
  41. Maier H., Spiegel W., Kinaciyan T. & Hönigsmann H. 2004: Caterpillar dermatitis in two siblings due to the larvae of Thaumetopoea processionea L., the oak processionary caterpillar. - Dermatology 208: 70-73. Go to original source...
  42. Mattson W.J. & Haack R.A. 1987: Role of drought in outbreaks of plant-eating insects. Drought's physiological effects on plants can predict its influence on insect populations. - BioScience 37: 110-118. Go to original source...
  43. McManus M. & Csóka Gy. 2007: History and impact of gypsy moth in North America and comparison to recent outbreaks in Europe. - Acta Silv. Lign. Hung. 3: 47-64.
  44. Meurisse N., Hoch G., Schopf A., Battisti A. & Grégoire J.-C. 2012: Low temperature tolerance and starvation ability of the oak processionary moth: implications in a context of increasing epidemics. - Agr. For. Entomol. 14: 239-250. Go to original source...
  45. Mindlin M.J., Polain O., Waroux D., Case S. & Walsh B. 2012: The arrival of oak processionary moth, a novel cause of itchy dermatitis, in the UK: Experience, lessons and recommendations. - Publ. Health 126: 778-781. Go to original source...
  46. Mirchev P., Georgiev G., Georgieva M. & Bocheva L. 2016: Impact of low temperatures on pine processionary moth (Thaumetopoea pityocampa) larval survival in Bulgaria. - Silva Balcan. 17: 51-58.
  47. Moran P. 1953: The statistical analysis of the Canadian Lynx cycle. - Austral. J. Zool. 1: 291-298. Go to original source...
  48. Nowinszky L. & Puskás J. 2017: Light-trap catch of insects in connection with environmental factors. In Shields V.D.C. (ed.): Biological Control of Pest and Vector Insects. InTech, London, pp. 97-118. Go to original source...
  49. Nowinszky L., Puskás J. & Kúti Zs. 2010: Light trapping as a dependent of moonlight and clouds. - Appl. Ecol. Environ. Res. 8: 301-312. Go to original source...
  50. Pelini S.L., Prior K.M., Parker D.J., Dzurisin J.D.K., Lindroth R.L. & Hellmann J.J. 2009: Climate change and temporal and spatial mismatches in insect communities. In Letcher T. (ed.): Climate Change: Observed Impacts on Planet Earth. 1st ed. Elsevier, Oxford, pp. 215-231. Go to original source...
  51. Pimentel C., Calvão T., Santos M., Ferreira C., Neves M. & Nilsson J.Å. 2006: Establishment and expansion of a Thaumetopoea pityocampa (Den. & Schiff.) (Lep. Notodontidae) population with a shifted life cycle in a production pine forest, Central-Coastal Portugal. - For. Ecol. Manag. 233: 108-115. Go to original source...
  52. Pimentel C., Calvão T. & Ayres M.P. 2011: Impact of climatic variation on populations of pine processionary moth Thaumetopoea pityocampa in a core area of its distribution. - Agr. For. Entomol. 13: 273-281. Go to original source...
  53. Pödör Z., Edelényi M. & Jereb L. 2014: Systematic analysis of time series. - Infocommun. J. 6: 16-21.
  54. Raimondo S., Strazanac J.S. & Butler L. 2004: Comparison of sampling techniques used in studying Lepidoptera population dynamics. - Environ. Entomol. 33: 418-425. Go to original source...
  55. Rasztovits E., Berki I., Mátyás C., Czimber K., Pötzelsberger E. & Móricz N. 2014: The incorporation of extreme drought events improves models for beech persistence at its distribution limit. - Ann. For. Sci. 71: 201-210. Go to original source...
  56. Robinet C. & Roques A. 2010: Direct impacts of recent climate warming on insect populations. - Integr. Zool. 5: 132-142. Go to original source...
  57. Roques A., Rousselet J., Avci M., Avtzis D.N., Basso A., Battisti A., Ben J.M.L., Bensidi A., Berardi L., Berretima W. et al. 2015: Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. In Roques A. (ed.): Processionary Moths and Climate Change: An Update. Springer, Dordrecht, pp. 81-161. Go to original source...
  58. Rouault G., Candau J.-N., Lieutier F., Nageleisen L.-M., Martin J.-C. & Warzée N. 2006: Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. - Ann. For. Sci. 63: 613-624. Go to original source...
  59. Skule B. & Vilhelmsen F. 1997: Thaumetopoea processionea L. found in Denmark. URL: http://www.lepidoptera.dk/process.htm (last accessed 30 May 2017).
  60. Stigter H. & Romeijn G. 1992: [After a little more than a century Thaumetopoea processionea has again a massive local representation in The Netherlands.] - Entomol. Ber. (Amsterdam) 55: 9-66 [in Dutch].
  61. Straw N.A. & Williams D.T. 2013: Impact of the leaf miner Cameraria ohridella (Lepidoptera: Gracillariidae) and bleeding canker disease on horse-chestnut: Direct effects and interaction. - Agr. For. Entomol. 15: 321-333. Go to original source...
  62. Szontagh P. 1975: The role of light traps in the prognosis of forest pests. - Növényvédelem 11: 54-57 [in Hungarian]. Go to original source...
  63. Szontagh P. 1976: Gradation conditions of oak damaging macrolepidoptera. - Erdész. Kutat. 72: 63-68 [in Hungarian]. Go to original source...
  64. Tallós P. 1966: The role of light traps in forest protection. - Az Erdő 15: 134-136 [in Hungarian].
  65. Vanhanen H., Veteli T.O., Paivinen S., Kellomaki S. & Niemela P. 2007: Climate change and range shifts in two insect defoliators: gypsy moth and nun moth - A model study. - Silva Fenn. 41: 621-638. Go to original source...
  66. Wagenhoff E. & Veit H. 2011: Five years of continuous Thaumetopoea processionea monitoring: tracing population dynamics in an arable landscape of South-Western Germany. - Gesun.Pfl. 63: 51-61. Go to original source...
  67. Wagenhoff E., Blum R., Engel K., Veit H. & Delb H. 2013: Temporal synchrony of Thaumetopoea processionea egg hatch and Quercus robur budburst. - J. Pest Sci. 86: 193-202. Go to original source...
  68. Wagenhoff E., Wagenhoff A., Blum R., Veit H., Zapf D. & Delb H. 2014: Does the prediction of the time of egg hatch of Thaumetopoea processionea (Lepidoptera: Notodontidae) using a frost day/temperature sum model provide evidence of an increasing temporal mismatch between the time of egg hatch and that of budburst of Quercus. - Eur. J. Entomol. 111: 207-215. Go to original source...
  69. Yang X., Tang G., Xiao C. & Deng F. 2007: Terrain revised model for air temperature in mountainous area based on DEM1s. - J. Geogr. Sci. 17: 399-408. Go to original source...
  70. Yela J.L. & Holyoak M. 1997: Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). - Environ. Entomol. 26: 283-1290. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.