Eur. J. Entomol. 122: 404-412, 2025 | DOI: 10.14411/eje.2025.045

Direct tests of haplodiploid inheritance in Thrips tabaci (Thysanoptera: Thripidae) using parent-offspring SSR-GBSOriginal article

Tatsumi KUDO ORCID...*, Po-Wei HSU ORCID..., Shigeto DOBATA ORCID...*
Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan; e-mails: tatsu-cu@g.ecc.u-tokyo.ac.jp, briangd2s@gmail.com, dobata@g.ecc.u-tokyo.ac.jp

Haplodiploidy is a sex determination system in which males are haploid and females are diploid. In the typical haplodiploid system, females inherit half of their genome from each parent, whereas males inherit a haploid genome exclusively from their mother. However, several exceptions to this pattern have recently been reported in some insects and spider mites, underscoring the need for rigorous genetic analyses of inheritance patterns in other haplodiploid species. Thrips (order Thysanoptera) are a major clade that exhibits haplodiploidy. Here, we investigated inheritance in the onion thrips, Thrips tabaci, by comparing parent-offspring genotypes using an amplicon-based microsatellite genotyping-by-sequencing method (Short Sequence Repeats-Genotyping by Sequencing, SSR-GBS). We successfully genotyped eight loci across eight families from the sexual lineage and additionally analyzed five families from the thelytokous lineage, including both diploid and triploid strains. In the sexual lineage, segregation conformed to arrhenotoky: F1 females inherited one allele from each parent, and F1 males carried a single maternal allele. In the thelytokous lineage, offspring inherited only alleles present in the mother. Compared with fragment-length genotyping, SSR-GBS increased the mean number of alleles detected per locus by 28% and reduced the rate of size homoplasy (alleles of the same size but different sequences), yielding clearer separation of the sexual and thelytokous lineages. These findings advance our understanding of the evolution of reproductive systems in this major haplodiploid clade and demonstrate the utility of SSR-GBS for high-resolution SSR genotyping.

Keywords: Sex determination, arrhenotoky, thelytoky, haplodiploidy, microsatellite

Received: September 18, 2025; Revised: December 16, 2025; Accepted: December 16, 2025; Published online: December 22, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
KUDO, T., HSU, P., & DOBATA, S. (2025). Direct tests of haplodiploid inheritance in Thrips tabaci (Thysanoptera: Thripidae) using parent-offspring SSR-GBS. EJE122, Article 404-412. https://doi.org/10.14411/eje.2025.045
Download citation

Attachments

Download fileS1.pdf

File size: 161.67 kB

References

  1. Adesanya A.W., Waters T.D., Lavine M.D., Walsh D.B., Lavine L.C. & Zhu F. 2020: Multiple insecticide resistance in onion thrips populations from Western USA. - Pestic. Biochem. Physiol. 165: 104553, 8 pp. Go to original source...
  2. Bournier A. 1956: Contribution à l'étude de la parthénogenèse des Thysanoptères et sa cytologie. - Arch. Zool. Exp. Gén. 93: 220-317.
  3. Brito R.O., Affonso P.R. & Silva J.C. 2010: Chromosomal diversity and phylogenetic inferences concerning thrips (Insecta, Thysanoptera) in a semi-arid region of Brazil. - Genet. Mol. Res. 9: 2230-2238. Go to original source...
  4. Brunner P.C., Chatzivassiliou E.K., Katis N.I. & Frey J.E. 2004: Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. - Heredity 93: 364-370. Go to original source...
  5. Cao L.J., Gao Y.F., Gong Y.J., Chen J.C., Chen M., Hoffmann A. & Wei S.J. 2019: Population analysis reveals genetic structure of an invasive agricultural thrips pest related to invasion of greenhouses and suitable climatic space. - Evol. Appl. 12: 1868-1880. Go to original source...
  6. Clark L.V. & Jasieniuk M. 2011: polysat: An R package for polyploid microsatellite analysis. - Mol. Ecol. Resour. 11: 562-566. Go to original source...
  7. Crespo-López M.E., Pala I., Duarte T.L., Dowling T.E. & Coelho M.M. 2007: Genetic structure of the diploid-polyploid fish Squalius alburnoides in southern Iberian basins Tejo and Guadiana, based on microsatellites. - J. Fish Biol. 71: 423-436. Go to original source...
  8. Darras H., Berney C., Hasin S., Drescher J., Feldhaar H. & Keller L. 2023: Obligate chimerism in male yellow crazy ants. - Science 380: 55-58. Go to original source...
  9. Dedukh D., Altmanova M., Klima J. & Kratochvil L. 2022: Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. - Development 149: dev200345, 13 pp. Go to original source...
  10. Eliash N., Endo T., Hua X., Johnston J.S., Techer M.A., Holmes V.R., Rangel J., Zheng H., Economo E.P. & Mikheyev A.S. 2024: Varroa mites escape the evolutionary trap of haplodiploidy. - bioRxiv doi: https://doi.org/10.1101/ 2024.05.10.593493, 28 pp. Go to original source...
  11. Estoup A., Jarne P. & Cornuet J.M. 2002: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. - Mol. Ecol. 11: 1591-1604. Go to original source...
  12. de la Filia A.G., Bain S.A. & Ross L. 2015: Haplodiploidy and the reproductive ecology of Arthropods. - Curr. Opin. Insect Sci. 9: 36-43. Go to original source...
  13. Fournier D., Estoup A., Orivel J., Foucaud J., Jourdan H., Le Breton J. & Keller L. 2005: Clonal reproduction by males and females in the little fire ant. - Nature 435: 1230-1234. Go to original source...
  14. Gao Y., Ji J., Xu C., Wang L., Zhang K., Li D., Wang X., Xin M., Hua H., Chen L. et al. 2024: Chromosome-level genome assembly of cotton thrips Thrips tabaci (Thysanoptera: Thripidae). - Sci. Data 11: 1003, 13 pp. Go to original source...
  15. Gill H.K., Garg H., Gill A.K., Gillett-Kaufman J.L. & Nault B.A. 2015: Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. - J. Integr. Pest Manag. 6: 6, 9 pp. Go to original source...
  16. Guichoux E., Lagache L., Wagner S., Chaumeil P., Léger P., Lepais O., Lepoittevin C., Malusa T., Revardel E., Salin F. et al. 2011: Current trends in microsatellite genotyping. - Mol. Ecol. Resour. 11: 591-611. Go to original source...
  17. Herbette M. & Ross L. 2023: Paternal genome elimination: patterns and mechanisms of drive and silencing. - Curr. Opin. Genet. Dev. 81: 102065, 9 pp. Go to original source...
  18. Jacobson A.L., Booth W., Vargo E.L. & Kennedy G.G. 2013a: Thrips tabaci population genetic structure and polyploidy in relation to competency as a vector of Tomato Spotted Wilt Virus. - PLoS ONE 8(1): e54484, 10 pp. Go to original source...
  19. Jacobson A.L., Johnston J.S., Rotenberg D., Whitfield A.E., Booth W., Vargo E.L. & Kennedy G.G. 2013b: Genome size and ploidy of Thysanoptera. - Insect Mol. Biol. 22: 12-17. Go to original source...
  20. Jouraku A., Kuwazaki S., Iida H., Ohta I., Kusano H., Takagi M., Yokoyama T., Kubota N., Shibao M., Shirotsuka K. et al. 2019: T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan. - Pestic. Biochem. Physiol. 158: 77-87. Go to original source...
  21. Jouraku A., Tomizawa Y., Watanabe K., Yamada K., Kuwazaki S., Aizwa M., Toda S. & Sonoda S. 2024: Evolutionary origin and distribution of amino acid mutations associated with resistance to sodium channel modulators in onion thrips, Thrips tabaci. - Sci. Rep. 14: 1-15. Go to original source...
  22. Katlav A., Cook J.M. & Riegler M. 2020: Egg size-mediated sex allocation and mating-regulated reproductive investment in a haplodiploid thrips species - Funct. Ecol. 35: 485-498. Go to original source...
  23. Katlav A., Nguyen D.T., Cook J.M. & Riegler M. 2021: Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition. - Evolution 75: 1525-1536. Go to original source...
  24. Katlav A., Nguyen D.T., Morrow J.L., Spooner-Hart R.N. & Riegler M. 2022: Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way. - Heredity 128: 169-177. Go to original source...
  25. Kobayashi K. & Hasegawa E. 2013: Isolation of microsatellite loci from the onion thrips, Thrips tabaci. - J. Insect Sci. 13: 30, 5 pp. Go to original source...
  26. Lacy K.D., Hart T. & Kronauer D.J.C. 2024: Co-inheritance of recombined chromatids maintains heterozygosity in a parthenogenetic ant. - Nature Ecol. Evol. 8: 1522-1533. Go to original source...
  27. Li X.W., Wang P., Fail J. & Shelton A.M. 2015: Detection of gene flow from sexual to asexual lineages in Thrips tabaci (Thysanoptera: Thripidae). - PLoS ONE 10: e0138353, 13 pp. Go to original source...
  28. Martin M. 2011: Cutadapt removes adapter sequences from high-throughput sequencing reads. - EMBnet J. 17: 10-12. Go to original source...
  29. Mishina T., Takeshima H., Takada M., Iguchi K., Zhang C., Zhao Y., Kawahara-Miki R., Hashiguchi Y., Tabata R., Sasaki T. et al. 2021: Interploidy gene flow involving the sexual-asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish. - Sci. Rep. 11: 22485, 12 pp. Go to original source...
  30. Nault B.A., Shelton A.M., Gangloff-Kaufmann J.L., Clark M.E., Werren J.L., Cabrera-La Rosa J.C. & Kennedy G.G. 2006: Reproductive modes in onion thrips (Thysanoptera: Thripidae) populations from New York onion fields. - Environ. Entomol. 35: 1264-1271. Go to original source...
  31. Neophytou C., Torutaeva E., Winter S., Meimberg H., Hasenauer H. & Curto M. 2018: Analysis of microsatellite loci in tree of heaven (Ailanthus altissima (Mill.) Swingle) using SSR-GBS. - Tree Genet. Genomes 14: 82, 12 pp. Go to original source...
  32. Nguyen D.T., Spooner-Hart R.N. & Riegler M. 2015: Polyploidy versus endosymbionts in obligately thelytokous thrips. - BMC Evol. Biol. 15: 23, 12 pp. Go to original source...
  33. Normark B.B. 2003: The evolution of alternative genetic systems in insects. - Annu. Rev. Entomol. 48: 397-423. Go to original source...
  34. Paradis E. & Schliep K. 2019: Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. - Bioinformatics 35: 526-528. Go to original source...
  35. Pomeyrol R. 1929: La parthénogenèse des thysanoptères. - Bull. Biol. Fr. Belg. 62: 3-12.
  36. Prussard-Radulesco E. 1930: Recherches biologiques et cytologiques sur quelques thysanoptères. - Ann. Epiphyties 16: 103-188.
  37. R Core Team 2025: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, URL: https://www.R-project.org/.
  38. Rabeling C. & Kronauer D.J.C. 2013: Thelytokous parthenogenesis in eusocial Hymenoptera. - Annu. Rev. Entomol. 58: 273-292. Go to original source...
  39. Raizada U. 1988: Some observations on parthenogenesis and its cytology in Microcephalothrips abdominalis (Crawford) (Insecta: Thysanoptera: Thripidae). - J. Pure Appl. Zool. (Delhi) 1: 127-133.
  40. Risler H. & Kempter E. 1961: Die Haploidie der Männchen und die Endopolyploidie in einigen Geweben von Haplothrips (Thysanoptera): - Chromosoma 12: 351-361. Go to original source...
  41. Rochette N.C., Rivera-Colón A.G. & Catchen J.M. 2019: Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. - Mol. Ecol. 28: 4737-4754. Go to original source...
  42. Ross L., Pen I. & Shuker D.M. 2010: Genomic conflict in scale insects: The causes and consequences of bizarre genetic systems. - Biol. Rev. 85: 807-828. Go to original source...
  43. ©arhanová P., Pfanzelt S., Brandt R., Himmelbach A. & Blattner F.R. 2018: SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. - Ecol. Evol. 8: 10817-10833. Go to original source...
  44. Schneider M.V., Driessen G., Beukeboom L.W., Boll R., van Eunen K., Selzner A., Talsma J. & Lapchin L. 2003: Gene flow between arrhenotokous and thelytokous populations of Venturia canescens (Hymenoptera). - Heredity 90: 260-267. Go to original source...
  45. Selkoe K.A. & Toonen R.J. 2006: Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. - Ecol. Lett. 9: 615-629. Go to original source...
  46. Sperling A.L. & Glover D.M. 2023: Parthenogenesis in dipterans: a genetic perspective. - Proc. R. Soc. (B) 290: 20230261, 13 pp. Go to original source...
  47. Tsutsui Y., Maeto K., Hamaguchi K., Isaki Y., Takami Y., Naito T. & Miura K. 2014: Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera. - Bull. Entomol. Res. 104: 307-313. Go to original source...
  48. van der Kooi C.J. & Schwander T. 2014: Evolution of asexuality via different mechanisms in grass thrips (Thysanoptera: Aptinothrips). - Evolution 68: 1883-1893. Go to original source...
  49. van der Kooi C.J., Matthey-Doret C. & Schwander T. 2017: Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. - Evol. Lett. 1: 304-316. Go to original source...
  50. Varela R.C.L. & Fail J. 2022: Host plant association and distribution of the onion thrips, Thrips tabaci cryptic species complex. - Insects 13: 298, 27 pp. Go to original source...
  51. Vartia S., Villanueva-Cañas J.L., Finarelli J., Farrell E.D., Collins P.C., Hughes G.M., Carlsson J.E.L., Gauthier D.T., McGinnity P., Cross T.F. et al. 2016: A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. - R. Soc. Open Sci. 3: 150565, 9 pp. Go to original source...
  52. Vorburger C. 2014: Thelytoky and sex determination in the Hymenoptera: Mutual constraints. - Sexual Devel. 8: 50-58. Go to original source...
  53. Weeks A.R., Marec F. & Breeuwer J.A.J. 2001: A mite species that consists entirely of haploid females. - Science 292: 2479-2482. Go to original source...
  54. Woldemelak W.A. 2020: The existence of deuterotokous reproduction mode in the T. tabaci (Thysanoptera: Thripidae) cryptic species complex. - J. Hortic. Res. 28: 21-28. Go to original source...
  55. Woldemelak W.A. 2021: Reproductive biology of thrips insect species and their reproductive manipulators. - J. Entomol. Res. Soc. 23: 287-304. Go to original source...
  56. Zhang J., Kobert K., Flouri T. & Stamatakis A. 2014: PEAR: a fast and accurate Illumina Paired-End reAd mergeR. - Bioinformatics 30: 614-620. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.