Eur. J. Entomol. 122: 331-343, 2025 | DOI: 10.14411/eje.2025.038

Effect of buffer strips along small watercourses on farmland spiders (Araneae) and ground beetles (Carabidae)Original article

Johannes BURMEISTER ORCID...1, Sabine BIRNBECK ORCID...1, Bernd PANASSITI ORCID...2, Theo BLICK ORCID...3, Roswitha WALTER1
1 Bavarian State Research Centre for Agriculture, Institute for Agroecology and Organic Farming, 85354 Freising, Germany; e-mails: Johannes.burmeister@lfl.bayen.de, sb-bs@tutanota.com, roswitha.walter@lfl.bayern.de
2 University of Applied Sciences Weihenstephan-Triesdorf, Institute for Ecology and Landscape, 85354 Freising, Germany; e-mail: bernd.panassiti@lfl.bayern.de
3 Private researcher, Heidloh 8, 95503 Hummeltal, Germany; e-mail: theo.blick@gmx.de

Buffer strips along small waterways that are adjacent to arable land are important for improving water quality and are common measures in agri-environmental schemes. To assess their contribution to arthropod species richness (alpha and gamma diversity) and differences in assemblages (beta diversity) we used pitfall traps to catch arachnids and ground beetles at 40 fields in four regions across Bavaria, Germany, during two or three one-week sampling periods in summer. A permanent vegetated buffer strip was present on 25 of the study fields, 15 were cropped to the field border adjacent to the waterway. Trapping was conducted in the riparian field border, the buffer zone (with or without an established buffer strip), the field edge about 15 m distant to the field border and in the field centre in 80 m distance. Results indicated that alpha and gamma diversity were lowest in the field centre, and the riparian field border had the highest species richness of arachnids. Alpha diversity of ground beetles and spiders was not enhanced in fields with a buffer strip and the buffer strip did not have significantly higher species richness than cropped fields at the same field position. In contrast for ground beetles a higher species richness was observed in the unbuffered field border. An indicator species analysis showed that most of this effect was due to spillover of eurytopic arable species from the neighbouring field. For ground beetle assemblages buffered riparian field borders showed a higher dissimilarity to the other sampled field positions than riparian field borders without an adjacent buffer strip. We conclude that the establishment of buffer strips altered the faunal composition within the buffered riparian field border habitat in summer. We discuss ecological consequences, such as increased beta-diversity and changes in competition, which make buffer strips an important component of the preservation of biodiversity in agricultural landscapes.

Keywords: Riparian buffer strips, diversity, spill-over, field border, Germany

Received: February 21, 2025; Revised: September 24, 2025; Accepted: September 24, 2025; Published online: November 27, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
BURMEISTER, J., BIRNBECK, S., PANASSITI, B., BLICK, T., & WALTER, R. (2025). Effect of buffer strips along small watercourses on farmland spiders (Araneae) and ground beetles (Carabidae). EJE122, Article 331-343. https://doi.org/10.14411/eje.2025.038
Download citation

References

  1. Barber H.S. 1931: Traps for cave-inhabiting insects. - J. Elisha Mitchell Sci. Soc. 46: 259-266.
  2. Bàrberi P. & Moonen A.-C. 2020: Reconciling Agricultural Production with Biodiversity Conservation. Burleigh Dodds Science Publishing, Cambridge, 282 pp. Go to original source...
  3. Bates D., Mächler M., Bolker B. & Walker S. 2015: Fitting linear mixed-effects models using lme4. - J. Stat. Softw. 67: 1-48. Go to original source...
  4. Bennewicz J. & Barczak T. 2020: Ground beetles (Carabidae) of field margin habitats. - Biologia 75: 1631-1641. Go to original source...
  5. Bieroza M.Z., Bol R. & Glendell M. 2021: What is the deal with the Green Deal: Will the new strategy help to improve European freshwater quality beyond the Water Framework Directive? - Sci. Total Environ. 791: 148080, 8 pp. Go to original source...
  6. Birnbeck S., Burmeister J., Wolfrum S., Panassiti B. & Walter R. 2025: Riparian buffer strips promote biomass, species richness and abundance of flying insects in agricultural landscapes. - Agric. Ecosyst. Environ. 378: 109300, 13 pp. Go to original source...
  7. Blick T., Finch O.-D., Harms K.H., Kiechle J., Kielhorn K.-H. & Kreuels M. 2016: Rote Liste und Gesamtartenliste der Spinnen (Arachnida: Araneae) Deutschlands. In Gruttke H., Balzer S., Binot-Hafke M., Haupt H., Hofbauer N., Ludwig G., Matze-Hajek G. & Ries M. (eds): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Landwirtschaftsverlag, Münster, pp. 383-510.
  8. Blitzer E.J., Dormann C.F., Holzschuh A., Klein A.-M., Rand T.A. & Tscharntke T. 2012: Spillover of functionally important organisms between managed and natural habitats. - Agric. Ecosyst. Environ. 146: 34-43. Go to original source...
  9. Burmeister J. & Panassiti B. 2022: Sample species richness accounting for different determination depth. URL: https://doi.org/10.6084/m9.figshare.21324372.v3 (accessed 24 June 2023). Go to original source...
  10. Burmeister J., Blick T., Panassiti B., Birnbeck S. & Walter R. 2025: Dataset: Buffer strips at small running waters in intense agricultural landscape keep away common farmland spider (Araneae) and ground beetle (Carabidae) species from the field border during summer, with potential consequences for beta diversity - results from pitfall trapping on forty arable fields. URL: https://doi.org/10.6084/m9.figshare.29074805.v1 (accessed 27 Jul. 2025). Go to original source...
  11. de Cáceres M. & Legendre P. 2009: Associations between species and groups of sites: indices and statistical inference. - Ecology 90: 3566-3574. Go to original source...
  12. Cole L.J., Stockan J. & Helliwell R. 2020: Managing riparian buffer strips to optimise ecosystem services: a review. - Agric. Ecosyst. Environ. 296: 106891, 12 pp. Go to original source...
  13. Critchley C.N.R., Mole A.C., Towers J. & Collins A.L. 2013: Assessing the potential value of riparian buffer strips for biodiversity. - Aspects Appl. Biol. 118: 101-108.
  14. Dennis P. & Fry G.L.A. 1992: Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? - Agric. Ecosyst. Environ. 40: 95-115. Go to original source...
  15. Deroulers P., Gauffre B., Emeriau S., Harismendy A. & Bretagnolle V. 2020: Towards a standardized experimental protocol to investigate interactions between weed seeds and ground beetles (Carabidae, Coleoptera). - Arthr.-Plant Interact. 14: 127-138. Go to original source...
  16. Dicks L.V., Ashpole J.E., Dänhardt J., James K., Jönsson A. & Randall N. 2020: 4. Farmland conservation. In Sutherland W.J., Dicks L.V., Petrovan S.O. & Smith K.R. (eds): What Works in Conservation 2020. Open Book Publishers, pp. 283-322. Go to original source...
  17. Dufrêne M. & Legendre P. 1997: Species assemblages and indicator species: the need for a flexible asymmetrical approach. - Ecol. Monogr. 67: 345-366. Go to original source...
  18. Ernoult A., Vialatte A., Butet A., Michel N., Rantier Y., Jambon O. & Burel F. 2013: Grassy strips in their landscape context, their role as new habitat for biodiversity. - Agric. Ecosyst. Environ. 166: 15-27. Go to original source...
  19. Fischer C., Schlinkert H., Ludwig M., Holzschuh A., Gallé R., Tscharntke T. & Batáry P. 2013: The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. - J. Insect Conserv. 17: 1027-1038. Go to original source...
  20. Frank T., Aeschbacher S. & Zaller J.G. 2012: Habitat age affects beetle diversity in wildflower areas. - Agric. Ecosys. Environ. 152: 21-26. Go to original source...
  21. Fremier A.K., Kiparsky M., Gmur S., Aycrigg J., Craig R.K., Svancara L.K., Goble D.D., Cosens B., Davis F.W. & Scott J.M. 2015: A riparian conservation network for ecological resilience. - Biol. Conserv. 191: 29-37. Go to original source...
  22. Freude H., Harde K.W., Lohse G.A., Klausnitzer B. & Müller-Motzfeld G. 2012: Die Käfer Mitteleuropas Bd. 2: Adephaga 1: Carabidae (Laufkäfer). Elsevier Spektrum Akademischer Verlag, Heidelberg, 521 pp. Go to original source...
  23. Geiger F., Wäckers F.L. & Bianchi F.J.J.A. 2009: Hibernation of predatory arthropods in semi-natural habitats. - BioControl 54: 529-535. Go to original source...
  24. Gilbert S., Norrdahl K., Tuomisto H., Söderman G., Rinne V. & Huusela-Veistola E. 2015: Reverse influence of riparian buffer width on herbivorous and predatory Hemiptera. - J. Appl. Entomol. 139: 539-552. Go to original source...
  25. Gittleman J.L. & Kot M. 1990: Adaptation: statistics and a null model for estimating phylogenetic effects. - Syst. Zool. 39: 227-241. Go to original source...
  26. Golkowska K., Rugani B., Koster D. & van Oers C. 2016: Environmental and economic assessment of biomass sourcing from extensively cultivated buffer strips along water bodies. - Environ. Sci. Policy 57: 31-39. Go to original source...
  27. Gröning J. & Hochkirch A. 2008: Reproductive interference between animal species - Quart. Rev. Biol. 83: 257-282. Go to original source...
  28. Hanson H.I., Palmu E., Birkhofer K., Smith H.G. & Hedlund K. 2016: Agricultural land use determines the trait composition of ground beetle communities. - PLoS ONE 11: e0146329, 13 pp. Go to original source...
  29. Hartig F. 2022: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R Package Version 0.4.6. URL: https://CRAN.R-project.org/package=DHARMa
  30. Hochkirch A., Gröning J. & Bücker A. 2007: Sympatry with the devil: reproductive interference could hamper species coexistence. - J. Anim. Ecol. 76: 633-642. Go to original source...
  31. Holland J.M., Frampton G.K. & van den Brink P.J. 2002: Carabids as indicators within temperate arable farming systems: implications from SCRAB and LINK integrated farming systems projects. In Holland J.M. (ed.): The Agroecology of Carabid Beetles. Intercept, Andover, pp. 251-277. Go to original source...
  32. Honek A. & Jarosik V. 2000: The role of crop density, seed and aphid presence in diversification of field communities of Carabidae (Coleoptera). - Eur. J. Entomol. 97: 517-525. Go to original source...
  33. Horne P.A. 2007: Carabids as potential indicators of sustainable farming systems. - Austral. J. Exp. Agr. 47: 455-459. Go to original source...
  34. Hsieh T.C., Ma K.H. & Chao A. 2016: iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). - Meth. Ecol. Evol. 7: 1451-1456. Go to original source...
  35. Jowett K., Milne A.E., Metcalfe H., Hassall K.L., Potts S.G., Senapathi D. & Storkey J. 2019: Species matter when considering landscape effects on carabid distributions. - Agric. Ecosyst. Environ. 285: 106631, 13 pp. Go to original source...
  36. Kenis M., Auger-Rozenberg M.-A., Roques A., Timms L., Péré C., Cock M.J.W., Settele J., Augustin S. & Lopez-Vaamonde C. 2009: Ecological effects of invasive alien insects. - Biol. Invas. 11: 21-45. Go to original source...
  37. van Klink R., Bowler D.E., Gongalsky K.B., Swengel A.B., Gentile A. & Chase J.M. 2020: Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. - Science 368: 417-420. Go to original source...
  38. Korner-Nievergelt F., Roth T., van Felten S., Guélat J., Almasi B. & Korner-Nievergelt P. 2015: Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN. Academic Press, Cambridge, 316 pp. Go to original source...
  39. Kromp B. 1990: Carabid beetles (Coleoptera, Carabidae) as bioindicators in biological and conventional farming in Austrian potato fields. - Biol. Fertil. Soils 9: 182-187. Go to original source...
  40. Kromp B. 1999: Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. - Agric. Ecosyst. Environ. 74: 187-228. Go to original source...
  41. Kromp B. & Steinberger K.-H. 1992: Grassy field margins and arthropod diversity: a case study on ground beetles and spiders in eastern Austria (Coleoptera: Carabidae; Arachnida: Aranei, Opiliones). - Agric. Ecosyst. Environ. 40: 71-93. Go to original source...
  42. Larson E.L., Tinghitella R.M. & Taylor S.A. 2019: Insect hybridization and climate change. - Front. Ecol. Evol. 7: 348. 11 pp. Go to original source...
  43. Lefcheck J.S. 2016: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. - Meth. Ecol. Evol. 7: 573-579. Go to original source...
  44. Legendre P. 2014: Interpreting the replacement and richness difference components of beta diversity. - Global Ecol. Biogeogr. 23: 1324-1334. Go to original source...
  45. Lenth R.V. 2023: emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.8.7. URL: https://CRAN.R-project.org/package=emmeans
  46. Lind L., Hasselquist E.M. & Laudon H. 2019: Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. - J. Environ. Manag. 249: 109391, 8 pp. Go to original source...
  47. Litavský J., Majzlan O., Langraf V. & ®arnovièan H. 2024: Influence of habitat management and selected environmental parameters on the ground-living communities of harvestmen (Opiliones) in the historical park in Rusovce (Slovakia). - Environ. Monitor. Assess. 196: 1056, 16 pp. Go to original source...
  48. Mahnert V. 2004: Die Pseudoskorpione Österreichs (Arachnida, Pseudoscorpiones). - Denisia 12: 459-471.
  49. Makwela M.M., Slotow R. & Munyai T.C. 2023: Carabid beetles (Coleoptera) as indicators of sustainability in agroecosystems: a systematic review. - Sustainability 15: 3936, 12 pp. Go to original source...
  50. Marshall E.J.P & Moonen A.C. 2002: Field margins in northern Europe: their functions and interactions with agriculture. - Agric. Ecosyst. Environ. 89: 5-21. Go to original source...
  51. Marshall E.J.P., West T.M. & Kleijn D. 2006: Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. - Agric. Ecosyst. Environ. 113: 36-44. Go to original source...
  52. Martens J. 1978: Weberknechte, Opiliones - Spinnentiere, Arachnida. - Tierwelt Dtl. 64: 1-464.
  53. Massaloux D., Sarrazin B., Roume A., Tolon V. & Wezel A. 2020: Landscape diversity and field border density enhance carabid diversity in adjacent grasslands and cereal fields. - Landsc. Ecol. 35: 1857-1873. Go to original source...
  54. Meek B., Loxton D., Sparks T., Pywell R., Pickett H. & Nowakowski M. 2002: The effect of arable field margin composition on invertebrate biodiversity. - Biol. Conserv. 106: 259-271. Go to original source...
  55. Müller P., Neuhoff D., Nabel M., Schiffers K. & Döring T.F. 2022: Tillage effects on ground beetles in temperate climates: a review. - Agron. Sustain. Dev. 42: 651, 20 pp. Go to original source...
  56. Müller-Kroehling S., Hohmann G., Helbig C., Liesebach M., Lübke-Al Hussein M., Al Hussein I.A., Burmeister J., Jantsch M.C., Zehlius-Eckert W. & Müller M. 2020: Biodiversity functions of short rotation coppice stands - results of a meta study on ground beetles (Coleoptera: Carabidae). - Biomass Bioener. 132: 105416, 13 pp. Go to original source...
  57. Murphy G.E.P. & Romanuk T.N. 2014: A meta-analysis of declines in local species richness from human disturbances. - Ecol. Evol. 4: 91-103. Go to original source...
  58. Muster C. & Blick T. 2016: Rote Liste und Gesamtartenliste der Pseudoskorpione (Arachnida: Pseudoscorpiones) Deutschlands. 2. Fassung, Stand April 2008, einzelne Änderungen und Nachträge bis August 2015. In Gruttke H., Balzer S., Binot-Hafke M., Haupt H., Hofbauer N., Ludwig G., Matze-Hajek G. & Ries M. (eds): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Landwirtschaftsverlag, Münster, pp. 539-561.
  59. Muster C., Blick T. & Schönhofer A. 2016: Rote Liste und Gesamtartenliste der Weberknechte (Arachnida: Opiliones) Deutschlands. 3. Fassung, Stand April 2008, einzelne Änderungen und Nachträge bis August 2015. In Gruttke H., Balzer S., Binot-Hafke M., Haupt H., Hofbauer N., Ludwig G., Matze-Hajek G. & Ries M. (eds): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Landwirtschaftsverlag, Münster, pp. 513-536.
  60. Nelson J.L., Hunt L.G., Lewis M.T., Hamby K.A., Hooks C.R.R. & Dively G.P. 2018: Arthropod communities in warm and cool grass riparian buffers and their influence on natural enemies in adjacent crops. - Agric. Ecosyst. Environ. 257: 81-91. Go to original source...
  61. Nentwig W., Blick T., Bosmans R., Gloor D., Hänggi A. & Kropf C. 2023: Spiders of Europe. Version 11.2023. URL: https://www.araneae.nmbe.ch / https://doi.org/10.24436/1 (last accessed 12 Nov. 2023). Go to original source...
  62. Niemelä J. 2001: Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: a review. - Eur. J. Entomol. 98: 127-132. Go to original source...
  63. Öberg S., Ekbom B. & Bommarco R. 2007: Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. - Agric. Ecosyst. Environ. 122: 211-219. Go to original source...
  64. Öberg S., Mayr S. & Dauber J. 2008: Landscape effects on recolonisation patterns of spiders in arable fields. - Agric. Ecosyst. Environ. 123: 211-218. Go to original source...
  65. Perner J. & Malt S. 2003: Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. - Agric. Ecosyst. Environ. 98: 169-181. Go to original source...
  66. Popescu C., Oprina-Pavelescu M., Dinu V., Cazacu C., Burdon F., Forio M., Kupilas B., Friberg N., Goethals P., McKie B.G. & Risnoveanu G. 2021: Riparian vegetation structure influences terrestrial invertebrate communities in an agricultural landscape. - Water 13: 188, 20 pp. Go to original source...
  67. Power A.G. 2010: Ecosystem services and agriculture: tradeoffs and synergies. - Phil. Trans. R. Soc. Lond. (B) 365: 2959-2971. Go to original source...
  68. Rand T.A. & Louda S.M. 2006: Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. - Conserv. Biol. 20: 1720-1729. Go to original source...
  69. Rischen T., Geisbüsch K., Ruppert D. & Fischer K. 2022: Farmland biodiversity: wildflower-sown islands within arable fields and grassy field margins both promote spider diversity. - J. Insect Conserv. 26: 415-424. Go to original source...
  70. Schmidt J., Trautner J. & Müller-Motzfeld G. 2016: Rote Liste und Gesamtartenliste der Laufkäfer (Coleoptera: Carabidae) Deutschlands. 3. Fassung. In Gruttke H., Balzer S., Binot-Hafke M., Haupt H., Hofbauer N., Ludwig G., Matze-Hajek G. & Ries M. (eds): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Landwirtschaftsverlag, Münster, pp. 139-204.
  71. Schneider G., Krauss J., Boetzl F.A., Fritze M.-A. & Steffan-Dewenter I. 2016: Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. - Oecologia 182: 1141-1150. Go to original source...
  72. Schneider A., Blick T., Pauls S.U. & Dorow W.H.O. 2021: The list of forest affinities for animals in Central Europe - a valuable resource for ecological analysis and monitoring in forest animal communities? - Forest Ecol. Manag. 479: 118542, 8 pp. Go to original source...
  73. Schütz L., Wenzel B., Rottstock T., Dachbrodt-Saaydeh S., Golla B. & Kehlenbeck H. 2022: How to promote multifunctionality of vegetated strips in arable farming: a qualitative approach for Germany. - Ecosphere 13: e4229, 21 pp. Go to original source...
  74. Stockan J.A., Baird J., Langan S.J., Young M.R. & Iason G.R. 2014: Effects of riparian buffer strips on ground beetles (Coleoptera, Carabidae) within an agricultural landscape. - Insect Conserv. Div. 7: 172-184. Go to original source...
  75. Stutter M.I., Chardon W.J. & Kronvang B. 2012: Riparian buffer strips as a multifunctional management tool in agricultural landscapes: introduction. - J. Environ. Quality 41: 297-303. Go to original source...
  76. Thiele H.-U. 1977: Carabid Beetles in their Environments. Springer, Berlin, Heidelberg, 372 pp. Go to original source...
  77. Thomas C.F.G., Brown N.J. & Kendall D.A. 2006: Carabid movement and vegetation density: Implications for interpreting pitfall trap data from split-field trials. - Agric. Ecosyst. Environ. 113: 51-61. Go to original source...
  78. Vormeier P., Liebmann L., Weisner O. & Liess M. 2023: Width of vegetated buffer strips to protect aquatic life from pesticide effects. - Water Res. 231: 119627, 8 pp. Go to original source...
  79. Waite T.A. & Campbell L.G. 2006: Controlling the false discovery rate and increasing statistical power in ecological studies. - Ecoscience 13: 439-442. Go to original source...
  80. Wallin H. & Ekbom B. 1994: Influence of hunger level and prey densities on movement patterns in three species of Pterostichus beetles (Coleoptera: Carabidae). - Environ. Entomol. 23: 1171-1181. Go to original source...
  81. Yamamoto T., Nakagoshi N. & Touyama Y. 2001: Ecological study of pseudoscorpion fauna in the soil organic layer in managed and abandoned secondary forests. - Ecol. Res. 16: 593-601. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.