Eur. J. Entomol. 122: 279-286, 2025 | DOI: 10.14411/eje.2025.032
The prospects of using retrotransposon iPBS molecular marker to characterise the genetic diversity of Chrysochraon dispar and Stethophyma grossum (Orthoptera: Acrididae)Original article
- 1 Department of Ecology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas street 1, LV-1004 Rīga, Latvia; e-mails: ruta.starka@lu.lv, gunita.deksne@lu.lv
- 2 Laboratory of Environmental Genetics, Institute of Biology, Faculty of Medicine and Life Sciences, University of Latvia, O. Vācieša street 4, LV-1004 Rīga, Latvia; e-mails: paula_marta.muceniece@lu.lv, nikole.krasnevska@lu.lv, andra.mikelsone@gmail.com, dace.grauda@lu.lv
Molecular markers have become indispensable tools in contemporary ecological research, offering insights into genetic diversity and structure. These parameters are pivotal for addressing fundamental questions in landscape ecology and planning effective species conservation. Grasshoppers have one of the largest genomes known. A significant portion of the grasshopper genome is composed of mobile genetic elements, with a particular abundance of retrotransposons. In this study, we utilised the iPBS (inter-primer binding sequence) PCR based fingerprinting marker system, as a novel approach based on retrotransposons for the study of Orthoptera. We evaluate the efficacy of the iPBS primers system in characterizing the genetic diversity of two large-genome grasshopper species, Stethophyma grossum and Chrysochraon dispar. Our findings demonstrate the potential of iPBS markers as a valuable tool for assessing the genetic diversity of orthopterans. This approach offers a promising avenue for future research in population genetics and conservation biology.
Keywords: Grasshoppers, molecular ecology, DNA fingerprinting, transposable elements
Received: October 22, 2024; Revised: September 23, 2025; Accepted: September 23, 2025; Published online: October 14, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Amiteye S. 2021: Basic concepts and methodologies of DNA marker systems in plant molecular breeding. - Heliyon 7(10): e08093, 20 pp.
Go to original source...
- Arvas Y.E., Marakli S., Kay Y. & Kalendar R. 2023: The power of retrotransposons in high-throughput genotyping and sequencing. - Front. Plant Sci. 14: 1174339, 12 pp.
Go to original source...
- Bazelet C.S. & Samways M.J. 2011: Identifying grasshopper bioindicators for habitat quality assessment of ecological networks. - Ecol. Indicat. 11: 1259-1269.
Go to original source...
- Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L. & Feschotte C. 2018: Ten things you should know about transposable elements. - Genome Biol. 19: 199, 12 pp.
Go to original source...
- Budrys E. & Pakalniškis S. 2007: The Orthoptera (Insecta) of Lithuania. - Acta Zool. Lituan. 17: 105-115.
Go to original source...
- Budrys E., Bačianskas V., Budrienè A., Dapkus D., Švitra G. & Ūsaitis T. 2008: Distribution of four species of Oedipodinae grasshoppers in Lithuania (Orthoptera: Acrididae). - New Rare Lithuan. Insect Spec. 20: 14-19.
- Chapuis M.P., Streiff R. & Sword G. 2011: Long microsatellites and unusually high levels of genetic diversity in the Orthoptera. - Insect Mol. Biol. 21: 181-186.
Go to original source...
- Christensen S.M. & Eickbush T.H. 2005: R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. - Mol. Cell. Biol. 25: 6617-6628.
Go to original source...
- Cong Y., Ye X., Mei Y., He K. & Li F. 2022: Transposons and non-coding regions drive the intrafamily differences of genome size in insects. - iScience 25(9): 104873, 21 pp.
Go to original source...
- DAP (Dabas Aizsardzības Pārvalde) 2019: Report to the European Commission on the Conservation Status of Species and Habitat Types in Latvia for the Period of 2013-2018. URL: https://www.daba.gov.lv/lv/media/5696/download?attachment (last accessed 7 Sep. 2024) [in Latvian].
- Doungous O., Kalendar R., Filippova N. & Ngane B.K. 2020: Utility of iPBS retrotransposons markers for molecular characterization of African Gnetum species. - Plant Biosyst. 154: 587-592.
Go to original source...
- Dvořák T., Hadrava J. & Knapp M. 2022: The ecological niche and conservation value of Central European grassland orthopterans: A quantitative approach. - Biol. Conserv. 265: 109406, 9 pp.
Go to original source...
- Fambrini M., Usai G., Vangelisti A., Mascagni F. & Pugliesi C. 2020: The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. - Genesis 58(12): e23399, 27 pp.
Go to original source...
- Fartmann T., Kramer B., Stelzner F. & Poniatowski D. 2012: Orthoptera as ecological indicators for succession in steppe grassland. - Ecol. Indicat. 20: 337-344.
Go to original source...
- Finnegan D.J. 2012: Retrotransposons. - Curr. Biol. 22(11): R432-R437.
Go to original source...
- Fokina O., Grauda D. & Rashal I. 2015: Genetic diversity of two perch Perca fluviatilis populations of the Latgale region. In: Environment, Technology, Resources. Proceedings of the 10th International Scientific and Practical Conference, June 18-20, 2015 Rezekne, Latvia. Vol. 2. Rēzeknes Augstskola, pp. 96-98.
Go to original source...
- Fokina O., Grauda D., Puriņa I., Barda I. & Rashal I. 2020: Genetic structure of the Limecola balthica population in the Gulf of Riga, Baltic Sea. - Proc. Latv. Acad. Sci. (B) 74: 381-384.
Go to original source...
- Gardiner T., Hill J. & Chesmore D. 2005: Review of the methods frequently used to estimate the abundance of Orthoptera in grassland ecosystems. - J. Insect Conserv. 9: 151-173.
Go to original source...
- Gazolla C.B., Ludwig A., de Moura Gama J. & Bruschi D.P. 2022: Evolutionary dynamics of DIRS-like and Ngaro-like retrotransposons in Xenopus laevis and Xenopus tropicalis genomes. - G3: Genes Genomes Genetics 12(2): jkab391, 9 pp.
Go to original source...
- GBIF Secretariat 2024a: Chrysochraon dispar (Germar, 1834). GBIF Backbone Taxonomy. Checklist Dataset. URL: https://www.gbif.org/species/1700841 (last accessed 30 Sep. 2024).
- GBIF Secretariat 2024b: Stethophyma grossum (Linnaeus, 1758). GBIF Backbone Taxonomy. Checklist Dataset. URL: https://www.gbif.org/species/1711091 (last accessed 13 Sep. 2024).
- Havecker E.R., Gao X. & Voytas D.F. 2004: The diversity of LTR retrotransposons. - Genome Biol. 5: 225, 6 pp.
Go to original source...
- Hawlitschek O., Sadílek D., Dey L.S., Buchholz K., Noori S., Baez I.L., Wehrt T., Brozio J., Trávníček P., Seidel M. et al. 2023: New estimates of genome size in Orthoptera and their evolutionary implications. - PLoS ONE 18(3): e0275551, 20 pp.
Go to original source...
- Hommelsheim C.M., Frantzeskakis L., Huang M. & Ülker B. 2014: PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications. - Sci. Rep. 4: 5052, 13 pp.
Go to original source...
- Husemann M., Sadílek D., Dey L.S., Hawlitschek O. & Seidel M. 2020: New genome size estimates for band-winged and slant-faced grasshoppers (Orthoptera: Acrididae: Oedipodinae, Gomphocerinae) reveal the so far largest measured insect genome. - Caryologia 73: 111-120.
- Jackson N.D. & Fahrig L. 2016: Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. - Landsc. Ecol. 31: 951-968.
Go to original source...
- Kalendar R. & Schulman A.H. 2014: Transposon-based tagging: IRAP, REMAP, and iPBS. In Besse P. (ed.): Molecular Plant Taxonomy. Methods in Molecular Biology. Vol. 1115. Humana Press, Totowa, NJ, pp. 233-255.
Go to original source...
- Kalendar R., Antonius K., Smykal P. & Schulman A.H. 2010: iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. - Theor. Appl. Genet. 121: 1419-1430.
Go to original source...
- Kartavtsev Y.P. 2021: Some examples of the use of molecular markers for needs of basic biology and modern society. - Animals (Basel) 11(5): 1473, 24 pp.
Go to original source...
- Keller D., Strien M.J., Herrmann M., Bolliger J., Edwards P.J., Ghazoul J. & Hoderegger R. 2013: Is functional connectivity in common grasshopper species affected by fragmentation in an agricultural landscape? - Agric. Ecosyst. Environ. 175: 39-46.
Go to original source...
- Kolodinska-Brantestam A., Boiko D., Grauda D., Krasņevska N. & Rashal I. 2015: Genetic diversity of mute swan population of the Riga urban area. - Proc. Latv. Acad. Sci. (B) 69: 135-139.
Go to original source...
- Krasņevska N., Miķelsone A., Kruchonok A., Rashal I., Butkauskas D. & Grauda D. 2022: Assessment of iPBS primers potential to be used in genetic diversity studies of wild cloudberry (Rubus chamaemorus L.) populations. - Proc. Latv. Acad. Sci. (B) 76: 314-316.
Go to original source...
- Labadessa R., Forte L. & Mairota P. 2015: Exploring life forms for linking orthopteran assemblage and grassland plant community. - Hacquetia 14: 33-42.
Go to original source...
- Lee R.J., Horton C.A., van Treeck B., McIntyre J.J.R. & Collins K. 2024: Conserved and divergent DNA recognition specificities and functions of R2 retrotransposon N-terminal domains. - Cell Reports 43(5): 114239, 41 pp.
Go to original source...
- Li T., Zhang M., Qu Y., Ren Z., Zhang J., Guo Y., Heong K.L., Villareal B., Zhang Y. & Ma E. 2011: Population genetic structure and phylogeographical pattern of rice grasshopper, Oxya hyla intricata, across Southeast Asia. - Genetica 139: 511-524.
Go to original source...
- Liu X., Majid M., Yuan H., Chang H., Zhao L., Nie Y., He L., Liu X., He X. & Huang Y. 2022: Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism. - BMC Biology 20(1): 243, 16 pp.
Go to original source...
- Maes D. & Van Dyck H. 2005: Habitat quality and biodiversity indicator performances of threatened butterfly versus a multispecies group for wet heathlands in Belgium. - Biol. Conserv. 123: 177-187.
Go to original source...
- Majid M. & Yuan H. 2021: Comparative analysis of transposable elements in genus Calliptamus grasshoppers revealed that satellite DNA contributes to genome size variation. - Insects 2(9): 837, 18 pp.
Go to original source...
- Milyaeva P.A., Kukushkina I.V., Kim A.I. & Nefedova L.N. 2023: Stress induced activation of LTR retrotransposons in the Drosophila melanogaster genome. - Life 13(12): 2272, 16 pp.
Go to original source...
- Moller E.M., Bahnweg G., Sandermann H. & Geiger H.H. 1992: A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. - Nucl. Acids Res. 20: 6115-6116.
Go to original source...
- Nie Y., Liu X., Zhao L. & Huang Y. 2024: Repetitive element expansions contribute to genome size gigantism in Pamphagidae: A comparative study (Orthoptera, Acridoidea). - Genomics 116(5): 110896, 9 pp.
Go to original source...
- Nogureales V., Cordero P.J. & Ortego J. 2016: Hierarchical genetic structure shaped by topography in a narrow-endemic montane grasshopper. - BMC Evol. Biol. 16: 96, 15 pp.
Go to original source...
- Palacios-Gimenez O.M., Koelman J., Palmada-Flores M., Bradford T.M., Jones K.K., Cooper S.J.B., Kawakami T. & Suh A. 2020: Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. - BMC Biol. 18(1): 199, 21 pp.
Go to original source...
- Perner J. & Malt S. 2003: Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. - Agricult. Ecosyst. Environ. 98: 169-181.
Go to original source...
- Poniatowski D. & Fartmann T. 2011: Does wing dimorphism affect mobility in Metrioptera roeselii (Orthoptera: Tettigoniidae)? - Eur. J. Entomol. 108: 409-415.
Go to original source...
- Posit Team 2025: RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA, URL: http://www.posit.co/ (last accessed 9 Aug. 2025).
- R Core Team 2024: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, URL: https://www.R-project.org/ (last accessed 9 Aug. 2025).
- Reinhardt K., Kohler G., Maas S. & Detzel P. 2005: Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. - Ecography 28: 593-602.
Go to original source...
- Riet J., Ramos L.R.V., Lewis R.V. & Marins L.F. 2017: Improving the PCR protocol to amplify a repetitive DNA sequence. - Genet. Mol. Res. 16(3): gmr16039796, 11 pp.
Go to original source...
- Rosetti N. & Remis M.I. 2012: Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus. - PLoS ONE 7(7): e40807, 20 pp.
Go to original source...
- Runnel V. 2017a: Chrysochraon dispar (Germar, 1834). Estonian National Red List. URL: https://app.plutof.ut.ee/conservation-lab/red-list-assessment/view/22984 (last accessed 14 Sep. 2024).
- Runnel V. 2017b: Stethophyma grossum (Linnaeus, 1758). Estonian National Red List. URL: https://app.plutof.ut.ee/conservation-lab/red-list-assessment/view/24799 (last accessed 14 Sep. 2024).
- Sardet E., Roesti C. & Braud Y. 2021: Grasshoppers of Britain and Western Europe. A Photographic Guide. Bloomsbury Publishing, London, 304 pp.
- Selkoe K.A. & Toonen R.J. 2006: Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. - Ecol. Lett. 9: 615-629.
Go to original source...
- Senn M., Walter T.A., Sabeva M. & Stoyanova S. 2011: Orthoptera species (Ensifera, Caelifera) in differently managed grassland of the Smoljan region of the Rhodope Mountains, Bulgaria. - Bull. Soc. Entomol. Suisse 84: 193-213.
- Starka R., Piterāns U. & Spuņģis V. 2022: Annotated catalogue of Orthoptera (Orthoptera, Insecta) of Latvia. - ZooKeys 1134: 39-52.
Go to original source...
- Suh A., Smeds L. & Ellegren H. 2018: Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. - Mol. Ecol. 27: 99-111.
Go to original source...
- Sunnucks P. 2000: Efficient genetic markers for population biology. - Trends Ecol. Evol. 15: 199-203.
Go to original source...
- Tinnert J., Hellgren O., Lindberg J., Koch-Schmidt P. & Forsman A. 2016: Population genetic structure, differentiation, and diversity in Tetrix subulata pygmy grasshoppers: roles of population size and immigration. - Ecol. Evol. 6: 7831-7846.
Go to original source...
- Wickham H. 2016: ggplot2: Elegant Graphics for Data Analysis. Springer, New York, URL: https://ggplot2.tidyverse.org (last accessed 9 Aug. 2025).
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.