Eur. J. Entomol. 114: 365-371, 2017 | DOI: 10.14411/eje.2017.046

Seasonal polyphenism in body size and juvenile development of the swallowtail butterfly Papilio xuthus (Lepidoptera: Papilionidae)

Shinya KOMATA, Teiji SOTA
Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502, Japan; e-mails: komata@terra.zool.kyoto-u.ac.jp, sota@terra.zool.kyoto-u.ac.jp

Seasonal polyphenism in adults may be a season-specific adaptation of the adult stage and/or a by-product of adaptive plasticity of the juvenile stages. The swallowtail butterfly Papilio xuthus L. exhibits seasonal polyphenism controlled by photoperiod. Adults emerging in spring from pupae that spend winter in diapause have smaller bodies than adults emerging in summer from pupae that do not undergo diapause. Pupal diapause is induced by short-day conditions typical of autumn. To explore the interactive effects of temperature and developmental pathways on the variation in adult body size in P. xuthus, we reared larvae at two temperatures (20°C, 25°C) under two photoperiods (12L : 12D and 16L : 8D). Pupal weight and adult forewing length were greater in the generation that did not undergo diapause and were greater at 25°C than at 20°C. Thus, body size differences were greatest between the individuals that were reared at the longer day length and higher temperature and did not undergo diapause and those that were reared at the shorter day length and lower temperature and did undergo diapause. Unlike in other Lepidoptera, larvae of individuals that undergo diapause had shorter developmental times and higher growth rates than those that did not undergo diapause. This developmental plasticity may enable this butterfly to cope with the unpredictable length of the growing season prior to the onset of winter. Our results indicate that there are unexplored variations in the life history strategy of multivoltine Lepidoptera.

Keywords: Lepidoptera, Papilionidae, Papilio xuthus, seasonal polyphenism, body size variation, adaptive growth decision, protandry, temperature-size rule, time constraint

Received: July 27, 2016; Accepted: July 31, 2017; Revised: July 31, 2017; Published online: August 14, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KOMATA, S., & SOTA, T. (2017). Seasonal polyphenism in body size and juvenile development of the swallowtail butterfly Papilio xuthus (Lepidoptera: Papilionidae). Eur. J. Entomol.114(1), 2017.000. doi: 10.14411/eje.2017.046.
Download citation

References

  1. Aalberg Haugen I.M., Berger D. & Gotthard K. 2012: The evolution of alternative developmental pathways: footprints of selection on life-history traits in a butterfly. - J. Evol. Biol. 25: 1377-1388. Go to original source...
  2. Atkinson D. 1994: Temperature and organism size: a biological law for ectotherms? - Adv. Ecol. Res. 3: 1-58. Go to original source...
  3. Atkinson D. 1995: Effects of temperature on the size of aquatic ectotherms: exceptions to the genetal rule. - J. Therm. Biol. 20: 61-74. Go to original source...
  4. Atkinson D. 1996: Ectotherm life-history responses to developmental temperature. In Johnston I.A. & Bennett A.F. (eds): Animal and Temperature: Phenotypic and Evolutionary Adaptation. Cambridge University Press, Cambridge, UK, pp. 183-292.
  5. Bartoñ K. 2016: MuMIn: Multi-Model Inference. R Package Ver. 1.15.6. URL: https://CRAN.R-project.org/package=MuMIn.
  6. Bates D., Maechler M., Bolker B. & Walker S. 2015: Fitting linear mixed-effects models using lme4. - J. Stat. Soft. 67: 1-48. Go to original source...
  7. Brakefield P.M. & Frankino W.A. 2009: Polyphenism in Lepidoptera: multidisciplinary approaches to studies of evolution and development. In Ananthakrishnan T.N. & Whitman D.W. (eds): Phenotypic Plasticity of Insects: Mechanisms & Consequences. Oxford University Press, Oxford, UK, pp. 337-368.
  8. Cabanita R. & Atkinson D. 2006: Seasonal time constraints do not explain exceptions to the temperature size rule in ectotherms. - Oikos 114: 431-440. Go to original source...
  9. Chown S.L. & Gaston K.J. 1999: Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. - Biol. Rev. 74: 87-120. Go to original source...
  10. Davidowitz G. & Nijhout H.F. 2004: The physiological basis of reaction norms: The interaction among growth rate, the duration of growth and body size. - Integr. Comp. Biol. 44: 443-449. Go to original source...
  11. Fischer K. & Fiedler K. 2001: Sexual differences in life-history traits in the butterfly Lycaena tityrus: a comparison between direct and diapause development. - Entomol. Exp. Appl. 100: 325-330. Go to original source...
  12. Friberg M. & Karlsson B. 2010: Life-history polyphenism in the map butterfly (Araschnia levana): developmental constraints versus season-specific adaptations. - Evol. Ecol. Res. 12: 603-615.
  13. Friberg M., Aalberg Haugen I.M., Dahlerus J., Gotthard K. & Wiklund C. 2011: Asymmetric life-history decision-making in butterfly larvae. - Oecologia 165: 301-310. Go to original source...
  14. Friberg M., Dahlerus J. & Wiklund C. 2012: Strategic larval decision-making in a bivoltine butterfly. - Oecologia 169: 623-635. Go to original source...
  15. Fukuda H., Hama E., Kuzuya T., Takahashi A., Takahashi M., Tanaka B., Tanaka H., Wakabayashi M. & Watanabe Y. 1982: The Life Histories of Butterflies in Japan. Vol. I. Hoikusha, Osaka, 277 pp.
  16. Gotthard K. 1998: Life history plasticity in the satyrine butterfly Lasiommata petropolitana: investigating an adaptive reaction norm. - J. Evol. Biol. 11: 21-39. Go to original source...
  17. Gotthard K. 2008: Adaptive growth decisions in butterflies. - BioScience 58: 222-230. Go to original source...
  18. Gotthard K. & Nylin S. 1995: Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history. - Oikos 74: 3-17. Go to original source...
  19. Gotthard K., Nylin S. & Wiklund C. 1994: Adaptive variation in growth rate-life history costs and consequences in the speckled wood butterfly, Pararge aegeria. - Oecologia 99: 281-289. Go to original source...
  20. Ichinose T. 1974: Pupal diapause in some Japanese papilionid butterflies, with special reference to the difference in photoperiodic response between the diapausing pupae of Papilio maakii tutanus Fenton and P. xuthus Linnaeus. - Kontyû 42: 439-450.
  21. Kingsolver J.G., Massie K.R., Ragland G.J. & Smith M.H. 2007: Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule. - J. Evol. Biol. 20: 892-900. Go to original source...
  22. Kivelä S.M., Välimäki P. & Mäenpää M.I. 2012: Genetic and phenotypic variation in juvenile development in relation to temperature and development pathway in a geometrid moth. - J. Evol. Biol. 25: 881-891. Go to original source...
  23. Kivelä S.M., Välimäki P. & Gotthard K. 2013: Seasonality maintains alternative life-history phenotypes. - Evolution 67: 3145-3160. Go to original source...
  24. Kivelä S.M., Välimäki P. & Gotthard K. 2016: Evolution of alternative insect life histories in stochastic seasonal environments. - Ecol. Evol. 6: 5596-5613. Go to original source...
  25. Larsdotter Mellström H., Friberg M., Borg-Karlson A.K., Murtazina R., Palm M. & Wiklund C. 2010: Seasonal polyphenism in life history traits: time costs of direct development in a butterfly. - Behav. Ecol. Sociobiol. 64: 1377-1383. Go to original source...
  26. Leimar O. 1996: Life history plasticity: influence of photoperiod on growth and development in the common blue butterfly. - Oikos 76: 228-234. Go to original source...
  27. Lively C.M. 1986: Canalization versus developmental conversion in a spatially variable environment. - Am. Nat. 128: 561-572. Go to original source...
  28. Moran N.A. 1992: The evolutionary maintenance of alternative phenotypes. - Am. Nat. 139: 971-989. Go to original source...
  29. Nylin S., Wiklund C. & Wickman P.-O. 1993: Absence of trade-offs between sexual size dimorphism and early male emergence in a butterfly. - Ecology 74: 1414-1427. Go to original source...
  30. R Core Team 2015: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  31. Shapiro A.M. 1976: Seasonal polyphenism. - Evol. Biol. 9: 259-333.
  32. Tanaka K. & Tsubaki Y. 1984: Seasonal dimorphism, growth and food consumption in the swallowtail butterfly Papilio xuthus L. - Kontyû 52: 390-398.
  33. Taylor F. & Spalding J.B. 1989: Timing of diapause in relation to temporally variable catastrophes. - J. Evol. Biol. 2: 285-297. Go to original source...
  34. Teder T. 2014: Sexual size dimorphism requires a corresponding sex difference in development time: a meta-analysis in insects. - Funct. Ecol. 28: 479-486. Go to original source...
  35. Teder T., Esperk T., Remmel T., Sang A. & Tammaru T. 2010: Counterintuitive size patterns in bivoltine moths: late-season larvae grow larger despite lower food quality. - Oecologia 162: 117-125. Go to original source...
  36. Välimäki P., Kivelä S.M., Mäenpää M.I. & Tammaru T. 2013a: Latitudinal clines in alternative life histories in a geometrid moth. - J. Evol. Biol. 26: 118-129. Go to original source...
  37. Välimäki P., Kivelä S.M. & Mäenpää M.I. 2013b: Temperature- and density-dependence of diapause induction and its life history correlates in the geometrid moth Chiasmia clathrata (Lepidoptera: Geometridae). - Evol. Ecol. 27: 1217-1233. Go to original source...
  38. Välimäki P., Kivelä S.M., Raitanen J., Pakanen V.M., Vatka E., Mäenpää M.I., Keret N. & Tammaru T. 2015: Larval melanism in a geometrid moth: promoted neither by a thermal nor seasonal adaptation but desiccating environments. - J. Anim. Ecol. 84: 817-828. Go to original source...
  39. Watanabe M. & Nozato K. 1986: Fecundity of the yellow swallowtail butterflies, Papilio xuhus and P. machaon Hippocrates, in a wild environment. - Zool. Sci. 3: 509-516.
  40. Wiklund C. & Friberg M. 2011: Seasonal development and variation in abundance among four annual flight periods in a butterfly: a 20-year study of the speckled wood (Pararge aegeria). - Biol. J. Linn. Soc. 102: 635-649. Go to original source...
  41. Wiklund C., Nylin S. & Forsberg J. 1991: Sex-related variation in growth-rate as a result of selection for large size and protandry in a bivoltine butterfly, Pieris napi. - Oikos 60: 241-250. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.