Eur. J. Entomol. 111 (5): 663-668, 2014 | DOI: 10.14411/eje.2014.080

Dispersal of individuals of the flightless grassland ground beetle, Carabus hungaricus (Coleoptera: Carabidae), in three populations and what they tell us about mobility estimates based on mark-recapture

Zoltan ELEK1, Lukáą DRAG2,3, Pavel POKLUDA2,3, Lukáą ČÍ®EK2,3, Sándor BÉRCES4
1 MTA-ELTE-MTM Ecology Research Group, Hungarian Academy of Sciences, c/o Biological Institute of Eötvös Loránd University, Pázmány Péter sétány 1/C., H-1117 Budapest, and Hungarian Natural History Museum, Baross u. 13., H-1088 Budapest, Hungary; e-mail: zoltan.elek2@gmail.com
2 Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
3 Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; e-mails: lukascizek@gmail.com; lukasdrag@gmail.com
4 Duna-Ipoly National Park Directorate, Budapest, Hungary, e-mail: bercess@gmail.com

Knowledge of the dispersal ability of endangered species is crucial for developing effective, evidence-based conservation policies. Due to their limited dispersal abilities and specific habitat requirements, insects are among the animals most threatened by habitat fragmentation. We studied three populations of the highly endangered species of ground beetle, Carabus hungaricus, at three sites in Central Europe (Hungary and Czech Republic) using mark-release-recapture (MRR). The total catch of 574 pitfall traps set at the three sites was 6255 individuals. Depending on the site, the percentage recaptured was 13-32%. Average and maximum distance moved by individuals of both sexes at each of the sites ranged between 47-132 and 207-1104 m, respectively. The probability of the movements following an inverse power function (IPF) for the two sexes did not differ, but did differ among sites. Probability of dispersing for distances >100 m differed by an order of magnitude between sites, most likely because of differences in how the samples were collected. Despite the fact that individual beetles are able to move over distances in the order of kilometres, the high fragmentation of their habitats is likely to prevent them from colonizing most uninhabited habitat patches. Therefore, the conservation of this threatened ground beetle could be improved by adopting and implementing a policy of assisted dispersal. Our results from three study sites also provide an interesting illustration of the variability in the estimates of the probability of dispersal obtained using MRR.

Keywords: Coleoptera, Carabidae, Carabus hungaricus, dispersal, inverse power function, Hungary, Czech Republic, Natura 2000

Received: December 16, 2013; Accepted: April 18, 2014; Prepublished online: September 10, 2014; Published: December 10, 2014

Download citation

References

  1. Assman T. 1998: Bedeutung der kontinuaet von lebensraeumen fuer den naturschutz - untersuchungen an waldwohnennden laufKaefer (Colepotera: Carabidae) mit beispielen fuer methodische ergaenzen zur landzeitforschung. - Schr. R. Landschaftspfl. Natursch. 58: 191-214
  2. Baguette M. 2003: Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. - Ecography 26: 153-160 Go to original source...
  3. Baguette M., Petit S. & Queva F. 2000: Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. - J. Appl. Ecol. 37: 100-108 Go to original source...
  4. Baur B., Coray A., Minoretti N. & Zschokke S. 2005: Dispersal of the endangered flightless beetle Dorcadion fuliginator (Coleoptera: Cerambycidae) in spatially realistic landscapes. - Biol. Conserv. 124: 49-61 Go to original source...
  5. Berces S. & Elek Z. 2013: Overlapping generations can balance the fluctuations in the activity patterns of an endangered ground beetle species: long-term monitoring of Carabus hungaricus in Hungary. - Insect Conserv. Diver. 6: 290-299 Go to original source...
  6. Berces S., Szel G., Koedoeboecz V. & Kutasi C. 2008: The distribution, habitat types and nature conservation value of a Natura 2000 beetle, Carabus hungaricus Fabricius, 1792 in Hungary. In Penev L., Erwin T. & Assmann T. (eds): Back to the Roots or back to the Future? Towards a new Synthesis between Taxonomic, Ecological and Biogeographical Apporaches in Carabidology. Proceedings of the XIII European Carabidologists Meeting, Blagoevgrad. Pensoft Inc., Sofia, pp. 363-372
  7. Bonte D., van den Borre J. & Lens L. 2006: Geographical variation in wolf spider dispersal behaviour is related to landscape structure. - Anim. Behav. 72: 655-662 Go to original source...
  8. Bowler D.E. & Benton T.G. 2005: Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. - Biol. Rev. 80: 205-225 Go to original source...
  9. Campagne P., Buisson E., Varouchas G., Roche P., Baumel A. & Tatoni T. 2009: Modelling landscape structure constraints on species dispersal with a cellular automaton: Are there convergences with empirical data? - Ecol. Complex. 6: 183-190 Go to original source...
  10. Chiari S., Zauli A., Mazziotta A., Luiselli L., Audisio P. & Carpaneto G.M. 2013: Surveying an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands: a comparison between different capture methods. - J. Insect Conserv. 17: 171-181 Go to original source...
  11. Cizek L., Hauck D. & Pokluda P. 2012: Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera). - J. Insect Conserv. 16: 281-293 Go to original source...
  12. Clobert J., Ims R.A. & Rousset F. 2004: Causes, mechanisms and consequences of dispersal. In Hanski I. & Gaggiotti O.E. (eds): Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press, Burlington, MA, pp. 307-336
  13. David G., Giffard B., Piou D. & Jactel H. 2013: Dispersal capacity of Monochamus galloprovincialis, the European vector of the pine wood nematode, on flight mills. - J. Appl. Entomol. DOI: 10.1111/jen.12110 Go to original source...
  14. Den Boer P.J. 1970: On the significance of dispersal power for populations of carabid beetles (Coleoptera, Carabidae). - Oecologia 4: 1-28 Go to original source...
  15. Drag L., Hauck D., Pokluda P., Zimmermann K. & Cizek L. 2011: Demography and dispersal ability of a threatened saproxylic beetle: A mark-recapture study of the Rosalia longicorn (Rosalia alpina). - PLoS One 6: e21345 Go to original source...
  16. Drees C., Matern A. & Assmann T. 2008: Behavioural patterns of nocturnal carabid beetles determined by direct observations under red-light conditions. In Penev L., Erwin T. & Assmann T. (eds): Back to the Roots and Back to the Future? Towards a New Synthesis between Taxonomic, Ecological and Biogeographical Approaches in Carabidology. Proceedings of the XIII European Carabidologists Meeting, Blagoevgrad, August 20-24, 2007. Pensoft, Sofia, pp. 1-4
  17. Dyck H. Van & Baguette M. 2005: Dispersal behaviour in fragmented landscapes: Routine or special movements? - Basic Appl. Ecol. 6: 535-545 Go to original source...
  18. Ewers R.M. & Didham R.K. 2005: Confounding factors in the detection of species responses to habitat fragmentation. - Biol. Rev. 81: 117 Go to original source...
  19. Fric Z. & Konvicka M. 2007: Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. - Basic Appl. Ecol. 8: 377-386 Go to original source...
  20. Fric Z., Hula V., Klimova M., Zimmermann K. & Konvicka M. 2010: Dispersal of four fritillary butterflies within identical landscape. - Ecol. Res. 25: 543-552 Go to original source...
  21. Hassall C. & Thompson D. 2012: Study design and mark-recapture estimates of dispersal: a case study with the endangered damselfly Coenagrion mercuriale. - J. Insect Conserv. 16: 111-120 Go to original source...
  22. Hill J.K., Thomas C.D. & Lewis O.T. 1996: Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. - J. Anim. Ecol. 65: 725-735 Go to original source...
  23. Hockmann P., Schlomberg P., Wallin H. & Weber F. 1989: Bewegungsmuster und orientierung des laufkaefers Carabus auronitens in einem westfaelischen Eichen-Hain-buchen-Wald (Radarbeobachtungen und Rueckfangexperimente. - Abh. Westf. Mus. Naturk. 51: 1-71
  24. Holusa J., Kocarek P., Marhoul J. & Skokanova H. 2012: Platycleis vittata (Orthoptera: Tettigoniidae) in the northwestern part of its range is close to extinction: is this the result of landscape changes? - J. Insect Conserv. 16: 295-303 Go to original source...
  25. Hurka K. 1996: Carabidae of the Czech and Slovak Republics. Kabourek, Zlin, 565 pp
  26. Jonsell M., Schroeder M. & Larsson T. 2003: The saproxylic beetle Bolitophagus reticulatus: its frequency in managed forests, attraction to volatiles and flight period. - Ecography 26: 421-428 Go to original source...
  27. Kennedy P.J. 1994: The distribution and movement of ground beetles in relation to set-aside arable land. In Desender K., Dufrene M., Loreau M., Luff M.L. & Maelfait J.-P. (eds): Carabid Beetles: Ecology and Evolution. Kluwer, Dordrecht, pp. 439-444
  28. Koenig W.D., Van Vuren D. & Hooge P.N. 1996: Detectability, philopatry, and the distribution of dispersal distances in vertebrates. - Trends Ecol. Evol. 11: 514-517 Go to original source...
  29. Maes D., Vanreusel W., Talloen W. & Van Dyck H. 2004: Functional conservation units for the endangered Alcon Blue butterfly Maculinea alcon in Belgium (Lepidoptera: Lycaenidae). - Biol. Conserv. 120: 229-241 Go to original source...
  30. Matern A., Drees C., Meyer H. & Assmann T. 2008: Population ecology of the rare carabid beetle Carabus variolosus (Coleoptera: Carabidae) in north-west Germany. J. Insect. Conserv. 12: 591-601 Go to original source...
  31. Oleksa A., Chybicki I.J., Gawronski R., Svensson G.P. & Burczyk J. 2013: Isolation by distance in saproxylic beetles increases with niche specialization. - J. Insect. Conserv. 17: 219-233 Go to original source...
  32. Pe er G., Matsinos Y.G., Johst K., Franz K.W., Turlure C., Radchuk V., Malinowska A.H., Curtis J.M.R., Naujokaitis-Lewis I., Wintle B.A. & Henle K. 2013: A protocol for better design, application, and communication of population viability analyses. - Conserv. Biol. 27: 644-656 Go to original source...
  33. Petit S., Moilanen A., Hanski I. & Baguette M. 2001: Metapopulation dynamics of the bog fritillary butterfly: Movements between habitat patches. - Oikos 92: 491-500 Go to original source...
  34. Pokluda P., Hauck D. & Cizek L. 2012: Importance of marginal habitats for grassland diversity: fallows and overgrown tall-grass steppe as key habitats of endangered ground-beetle Carabus hungaricus. - Insect Conserv. Diver. 5: 27-36 Go to original source...
  35. R Core Team 2013: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/
  36. Riecken U. & Raths U. 1996: Use of radio-telemetry for studying dispersal and habitat use of Carabus coriaceus L. - Ann. Zool. Fenn. 33: 109-116
  37. Rijnsdorp A.D. 1980: Pattern of movement in and dispersal from a Dutch forest of Carabus problematicus Hbst. (Coleoptera, Carabidae). - Oecologia 45: 274-281 Go to original source...
  38. Sander A.C., Purtauf T., Wolters V. & Dauber J. 2006: Landscape genetics of the widespread ground-beetle Carabus auratus in an agricultural region. - Basic Appl. Ecol. 7: 555-564 Go to original source...
  39. Schultz C.B. 1998: Dispersal behavior and its implications for reserve design in a rare Oregon butterfly. - Conserv. Biol. 12: 284-292 Go to original source...
  40. Sklodowski J. 2008: Carabid beetle movements in a clear-cut area with retention groups of trees. In Penev L., Erwin T. & Assmann T. (eds): Back to the Roots and Back to the Future? Towards a New Synthesis between Taxonomic, Ecological and Biogeographical Approaches in Carabidology. Proceedings of the XIII European Carabidologists Meeting, Blagoevgrad, August 20-24, 2007. Pensoft, Sofia, pp. 451-467
  41. Smout S., King R. & Pomeroy P. 2010: Estimating demographic parameters for capture-recapture data in the presence of multiple mark types. - Environ. Ecol. Stat. 18: 331-347 Go to original source...
  42. Stevens V.M., Turlure C. & Baguette M. 2010: A meta-analysis of dispersal of butterflies. - Biol. Rev. 85: 625-642 Go to original source...
  43. Szel G., Berces S., Kutasi C. & Koedoeboecz V. 2006: A magyar futrinka (Carabus hungaricus Fabricius, 1792) hazai elterjedese es elohelyei. [Distribution and habitats of Carabus hungaricus Fabricius, 1792 in Hungary (Coleoptera: Carabidae.)] - Praenorica Folia Hist.-Natur. 9: 45-80 [in Hungarian]
  44. Thiele H.U. 1977: Carabid Beetles in their Environments. A Study on Habitat Selection by Adaptation in Physiology and Behaviour. Springer, Berlin, 369 pp
  45. Ulrich W. & Zalewski M. 2007: Are ground beetles neutral? - Basic Appl. Ecol. 8: 411-420 Go to original source...
  46. Zimmermann K., Fric Z., Jiskra P., Kopeckova M., Vlasanek P., Zapletal M. & Konvicka M. 2011: Mark-recapture on large spatial scale reveals long distance dispersal in the Marsh Fritillary, Euphydryas aurinia. - Ecol. Entomol. 36: 499-510 Go to original source...