Eur. J. Entomol. 110 (2): 311-317, 2013 | 10.14411/eje.2013.044

How fine is fine-scale? Questioning the use of fine-scale bioclimatic data in species distribution models used for forecasting abundance patterns in butterflies

Katharina J. FILZ1, Thomas SCHMITT1, Jan O. ENGLER1,2
1 Biogeography Department, Faculty of Regional and Environmental Sciences, Trier University, Universitätsring 15, D-54296 Trier, Germany; e-mails: kfilz@yahoo.de; thsh@uni-trier.de
2 Zoological Research Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany; e-mail: j.engler.zfmk@uni-bonn.de

The use of species distribution models (SDMs) to predict the spatial occurrence and abundance of species in relation to environmental predictors has been debated in terms of species' ecology and biogeography. The predictive power of these models is well recognized for vertebrates, but has not yet been tested for invertebrates. In this study, we aim to assess the use of SDMs for predicting local abundances of invertebrates at a macroscale level. A maximum entropy algorithm was used to build SDMs based on occurrence records of 61 species of butterflies and bioclimatic information with a 30 arc second resolution. Predictions of habitat suitability were correlated with butterfly abundance data derived from independently conducted field surveys in order to check for a relationship between the predictions of the model and local abundances. Even though the model accurately described the current distributions of the species in the study area at a macroscale, the observed occurrences of the species (i.e. presence/absence) recorded by the field surveys differed significantly from the model's predictions for the corresponding grid cells. Moreover, there was no correlation between observed abundance and the model's predictions for most species of butterflies. We conclude that the spatial abundance of butterflies cannot be predicted from environmental suitability modelled at a resolution as large as in this study. Using the finest scale bioclimatic information currently available (i.e. 30 arc seconds) it is not adequate to predict species abundances as structural and ecological factors as well as climatic patterns acting at a smaller scale are key determinants of the occurrence and abundance of invertebrates. Therefore, future studies have to account for the role of the resolution in environmental predictors when assessments of spatial abundances via SDMs will be conducted.

Keywords: Invertebrates, spatial abundance, environmental suitability, environmental niche model, MAXENT

Received: June 2012; Accepted: October 15, 2012; Published: April 11, 2013

Download citation

References

  1. ARAUJO M.B. & PETERSON A.T. 2012: Uses and misuses of bioclimatic envelope modelling. - Ecology 93: 1527-1539 Go to original source...
  2. ARAUJO M.B., PEARSON R.G., THUILLER W. & ERHARD M. 2005: Validation of species-climate impact models under climate change. - Glob. Change Biol. 11: 1504-1513 Go to original source...
  3. ARAUJO M.B., ALAGADOR D., CABEZA M., NOGUES-BRAVO D. & THUILLER W. 2011: Climate change threatens European conservation areas. - Ecol. Lett. 14: 484-492 Go to original source...
  4. BALDWIN R.A. 2009: Use of maximum entropy modeling in wildlife research. - Entropy 11: 854-866 Go to original source...
  5. BINK F.A. 1992: Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt & Co. Uitgevers en Importeurs, Haarlem, 512 pp
  6. BRAMBILLA M. & FICETOLA G.F. 2012: Species distribution models as a tool to estimate reproductive parameters: a case study with a passerine bird species. - J. Anim. Ecol. 81: 781-787 Go to original source...
  7. BRAMBILLA M., CASALE F., BERGERO V., CROVETTO G.M., FALCO R., NEGRI I., SICCARDI P. & BOGLIANI G. 2009: GIS-models work well, but are not enough: Habitat preferences of Lanius collurio at multiple levels and conservation implications. - Biol. Conserv. 142: 2033-2042 Go to original source...
  8. CORD A. & RODDER D. 2011: Inclusion of habitat availability in species distribution models through multi-temporal remotesensing data? - Ecol. Appl. 21: 3285-3298 Go to original source...
  9. DOVER J. & SETTELE J. 2009: The influences of landscape structure on butterfly distribution and movement: a review. - J. Insect Conserv. 13: 3-27 Go to original source...
  10. ELITH J., GRAHAM C.H., ANDERSON R.P., DUDIK M., FERRIER S., GUISAN A., HIJMANS R.J., HUETTMANN F., LEATHWICK J.R., LEHMANN A., LI J., LOHMANN L.G., LOISELLE B.A., MANION G., MORITZ C., NAKAMURA M., NAKAZAWA Y., OVERTON J.M.M., PETERSON A.T., PHILLIPS S.J., RICHARDSON K., SCACHETTIPEREIRA R., SHAPIRE R.E., SOBERON J., WILLIAMS S., WISZ M.S. & ZIMMERMANN N.E. 2006: Novel methods improve prediction of species' distributions from occurrence data. - Ecography 29: 129-151 Go to original source...
  11. ELITH J., PHILLIPS S.J., HASTIE T., DUDIK M., CHEE Y.E. & YATES C.J. 2011: A statistical explanation of MaxEnt for ecologists. - Divers. Distrib. 17: 43-57 Go to original source...
  12. FICETOLA G.F., THUILLER W. & MIAUD C. 2007: Prediction and validation of the potential global distribution of a problematic alien invasive species - the American bullfrog. - Divers. Distrib. 13: 476-485 Go to original source...
  13. FRANKLIN J. 2009: Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, 338 pp
  14. GASTON K.J. 2003: The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford, 280 pp
  15. HABEL J.C., RODDER D., STEFANO S., MEYER M. & SCHMITT T. 2010: Strong genetic cohesiveness between Italy and North Africa in four butterfly species. - Biol. J. Linn. Soc. 99: 818-830 Go to original source...
  16. HABEL J.C., RODDER D., SCHMITT T. & NEVE G. 2011: Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. - Glob. Change Biol. 17: 194-205 Go to original source...
  17. HEIKKINEN R.K., LUOTO M., ARAUJO M.B., VIRKKALA R., THUILLER W. & SYKES M.T. 2006: Methods and uncertainties in bioclimatic envelope modelling under climate change. - Prog. Phys. Geog. 30: 751-777 Go to original source...
  18. HERNANDEZ P.A., GRAHAM C.H., MASTER L.L. & ALBERT D.L. 2006: The effect of sample size and species characteristics on performance of different species distribution modelling methods. - Ecography 29: 773-785 Go to original source...
  19. HIJMANS R.J. 2012: Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. - Ecology 93: 679-688 Go to original source...
  20. HIJMANS R.J., CAMERON S.E., PARRA J.L., JONES P.G. & JARVIS A. 2005: Very high resolution interpolated climate surfaces for global land areas. - Int. J. Climatol. 25: 1965-1978 Go to original source...
  21. HOBBS N.T. & HANLEY T.A. 1990: Habitat evaluation: do use/ availability data reflect carrying capacity? - J. Wildlife Manag. 54: 515-522 Go to original source...
  22. HUNTLEY B., ALTWEGG R., BARNARD P., COLLINGHAM Y.C. & HOLE D.G. 2012: Modelling relationships between abundance patterns and climate. - Global Ecol. Biogeogr. 21: 668-681 Go to original source...
  23. JIMENEZ-VALVERDE A. 2012: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. - Glob. Ecol. Biogeogr. 21: 498-507 Go to original source...
  24. KELLER C.J., BROWN J.D. & KARR J.R. 1986: What is habitat suitability and how should it be measured? In Verner J., Morrison M.L. & Ralph C.J. (eds): Wildlife 2000: Modelling Wildlife-wabitat Relationships of Terrestrial Vertebrates. University of Wisconsin Press, Madison, pp. 476-488.
  25. LIU C., BERRY P.M., DAWSON T.P. & PEARSON R.G. 2005: Selecting thresholds of occurrence in the prediction of species distributions. - Ecography 28: 385-393 Go to original source...
  26. LOBO J.M., JIMENEZ-VALVERDE A. & REAL R. 2008: AUC: a misleading measure of the performance of predictive distribution models. - Glob. Ecol. Biogeogr. 17: 145-151 Go to original source...
  27. MURPHY H.T., VANDERWAL J. & LOVETT-DOUST J. 2006: Distribution of abundance across the range in eastern North American trees. - Global Ecol. Biogeogr. 15: 63-71 Go to original source...
  28. NIELSEN S.E., JOHNSON C.J., HEARD D.C. & BOYCE M.S. 2005: Can models of presence-absence be used to scale abundance? two case studies considering extremes in life history. - Ecography 28: 197-208 Go to original source...
  29. PEARCE J.L. & BOYCE M.S. 2006: Modelling distribution and abundance with presence only-data. - J. Appl. Ecol. 43: 405-412 Go to original source...
  30. PEARCE J. & FERRIER S. 2001: The practical value of modelling relative abundance of species for regional conservation planning: a case study. - Biol. Conserv. 98: 33-43 Go to original source...
  31. PEARSON R.G., RAXWORTHY C.J., NAKAMURA M. & PETERSON A.T. 2007: Predicting species distributions from small numbers of occurrence records, a test case using cryptic geckos in Madagascar. - J. Biogeogr. 34: 102-117 Go to original source...
  32. PFEIFER M., DISNEY M., QUAIFE T. & MARCHANT R. 2012: Terrestrial ecosystems from space: a review of earth observation products for macroecology applications. - Global Ecol. Biogeogr. 21: 603-624 Go to original source...
  33. PHILLIPS S.J., ANDERSON R.P. & SCHAPIRE R.E. 2006: Maximum entropy modeling of species geographic distributions. - Ecol. Model. 190: 231-259 Go to original source...
  34. POLLARD E. & YATES T.J. 1993: Monitoring Butterflies for Ecology and Conservation. The British Butterfly Monitoring Scheme. Chapman & Hall, London, 292 pp
  35. R DEVELOPMENT CORE TEAM 2012: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/
  36. RODDER D., SCHMIDTLEIN S., VEITH M. & LOTTERS S. 2009: Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied? - PlosOne 4(11): e7843 Go to original source...
  37. RODRIGUEZ J.P., BROTONS L., BUSTAMANTE L. & SEOANA J. 2007: The application of predictive modeling of species distribution to biodiversity conservation. - Divers. Distrib. 13: 243-251 Go to original source...
  38. SCHMITT T. & RAKOSY L. 2007: Changes of traditional agrarian landscape and their conservation implications: a case study of butterflies in Romania. - Divers. Distrib. 13: 855-862 Go to original source...
  39. SETTELE J., FELDMANN R. & REINHARDT R. 1999: Die Tagfalter Deutschlands-Ein Handbuch fuer FreilandGkologen, Umweltplaner und Naturschuetzer. Ulmer, Stuttgart, 452 pp
  40. SIQUEIRA M.F. DE, DURIGAN G., DE MARCO JR. P. & PETERSON A. T. 2009: Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. - J. Nat. Conserv. 17: 25-32 Go to original source...
  41. SOBERON J. & NAKAMURA M. 2009: Niches and distributional areas: Concepts, methods, and assumptions. - Proc. Natl. Acad. Sci. U.S.A. 106: 19644-19650 Go to original source...
  42. SWETS K. 1988: Measuring the accuracy of diagnostic systems. - Science 240: 1285-1293 Go to original source...
  43. VANDERWAL J., SHOO L.P., JOHNSON C.N. & WILLIAMS S.E. 2009: Abundance and the environmental niche: Environmental suitability estimated from niche models predicts the upper limit of local abundance. - Am. Nat. 174: 282-291 Go to original source...
  44. WENZEL M., SCHMITT T., WEITZEL M. & SEITZ A. 2006: The severe decline of butterflies on western calcareous grasslands during the last 30 years: A conservation problem. - Biol. Conserv. 128: 542-552 Go to original source...
  45. WISZ M.S., HIJMANS R.J., PETERSON A.T., GRAHAM C.H., GUISAN A. & NPSDW GROUP 2008: Effects of sample size on the performance of species distribution models. - Divers. Distrib. 14: 763-773 Go to original source...